(本小題滿分12分)
已知橢圓
左、右焦點(diǎn)分別為F1、F2,點(diǎn)
,點(diǎn)F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角互補(bǔ),求證:直線
過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo)。
(1)
(2)由![]()
![]()
則
且
由已知直線F2M與F2N的傾斜角互補(bǔ),![]()
![]()
整理得
直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)
解析試題分析:(1)由橢圓C的離心率![]()
得
,其中
,
橢圓C的左、右焦點(diǎn)分別為![]()
又點(diǎn)F2在線段PF1的中垂線上![]()
解得![]()
(2)由題意,知直線MN存在斜率,其方程為![]()
由![]()
消去![]()
設(shè)![]()
則![]()
且
由已知直線F2M與F2N的傾斜角互補(bǔ),
得![]()
化簡(jiǎn),得
![]()
整理得![]()
直線MN的方程為
,
因此直線MN過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)
考點(diǎn):橢圓方程性質(zhì)及直線與橢圓相交問(wèn)題
點(diǎn)評(píng):直線與橢圓相交問(wèn)題常用的思路:直線方程與橢圓方程聯(lián)立,整理為x的二次方程,利用根與系數(shù)的關(guān)系,將所求問(wèn)題轉(zhuǎn)化到兩根來(lái)表示
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
=1(a>b>0)的離心率為
,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(
+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D. ![]()
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過(guò)點(diǎn)
的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(其中
為坐標(biāo)原點(diǎn)),求整數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)圓C:
,此圓與拋物線![]()
有四個(gè)不同的交點(diǎn),若在
軸上方的兩交點(diǎn)分別為
,
,坐標(biāo)原點(diǎn)為
,
的面積為
。
(1)求實(shí)數(shù)
的取值范圍;
(2)求
關(guān)于
的函數(shù)
的表達(dá)式及
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線
與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。![]()
(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過(guò)點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留
)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
如圖,設(shè)點(diǎn)
、
分別是橢圓
的左、右焦點(diǎn),
為橢圓
上任意一點(diǎn),且
最小值為
.![]()
(1)求橢圓
的方程;
(2)若動(dòng)直線
均與橢圓
相切,且
,試探究在
軸上是否存在定點(diǎn)
,點(diǎn)
到
的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)
坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心為坐標(biāo)原點(diǎn)
,一個(gè)長(zhǎng)軸端點(diǎn)為
,短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,若直線
與
軸交于點(diǎn)
,與橢圓
交于不同的兩點(diǎn)
,且
。(14分)
(1)求橢圓
的方程;
(2)求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知拋物線
:
和點(diǎn)
,若拋物線
上存在不同兩點(diǎn)
、
滿足
.
(I)求實(shí)數(shù)
的取值范圍;
(II)當(dāng)
時(shí),拋物線
上是否存在異于
的點(diǎn)
,使得經(jīng)過(guò)
三點(diǎn)的圓和拋物線
在點(diǎn)
處有相同的切線,若存在,求出點(diǎn)
的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知橢圓
的兩焦點(diǎn)是
,離心率
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
在橢圓
上,且
,求DPF1F2的面積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com