中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
對于每個正整數n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示An,Bn兩點間的距離,則|A1B1|+|A2B2|+…+|A2013B2013|的值是( )
A.
B.
C.
D.
【答案】分析:由于y=(n2+n)x2-(2n+1)x+1=(nx-1)[(n+1)x-1],于是|AnBn|=-,利用累加法即可求和即可.
解答:解:∵y=(n2+n)x2-(2n+1)x+1=(nx-1)[(n+1)x-1],
∴由y=0得:x=或x=
∴An,0),Bn,0),
∴|AnBn|=-
∴|A1B1|+|A2B2|+…+|A2013B2013|=(1-)+(-)+(-)+…+(-
=1-=
故選C.
點評:本題考查數列與函數的綜合,難點在于明確|AnBn|=-,考查學生分析問題與轉化求解的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于每個正整數n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于每個正整數n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點,以|AnBn|表示An,Bn兩點間的距離,則|A1B1|+|A2B2|+…+|A2013B2013|的值是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

對于每個正整數n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為______

查看答案和解析>>

科目:高中數學 來源:廣東省高考數學一輪復習:6.7 數列的求和(解析版) 題型:解答題

對于每個正整數n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為   

查看答案和解析>>

同步練習冊答案