(本題滿分12分)設
為拋物線
的焦點,
為拋物線上任意一點,已
為圓心,
為半徑畫圓,與
軸負半軸交于
點,試判斷過
的直線與拋物線的位置關系,并證明。
科目:高中數學 來源: 題型:解答題
如圖,設拋物線
(
)的準線與
軸交于
,焦點為
;以
、
為焦點,離心率
的橢圓
與拋物線
在
軸上方的一個交點為
.![]()
(1)當
時,求橢圓的方程;
(2)在(1)的條件下,直線
經過橢圓
的右焦點
,與拋物線
交于
、
,如果以線段
為直徑作圓,試判斷點
與圓的位置關系,并說明理由;
(3)是否存在實數
,使得
的邊長是連續的自然數,若存在,求出這樣的實數
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為
.![]()
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段
所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分13分)已知橢圓
的左焦點
的坐標為
,
是它的右焦點,點
是橢圓
上一點,
的周長等于
.
(1)求橢圓
的方程;
(2)過定點
作直線
與橢圓
交于不同的兩點
,且
(其中
為坐標原點),求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)己知
、
、
是橢圓
:
(
)上的三點,其中點
的坐標為
,
過橢圓的中心,且
,
。
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
(斜率存在時)與橢圓
交于兩點
,
,設
為橢圓
與
軸負半軸的交點,且
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的短軸長等于焦距,橢圓C上的點到右焦點
的最短距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點
且斜率為
的直線
與
交于
、
兩點,
是點
關于
軸的對稱點,證明:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)
如圖,橢圓長軸端點為
,
為橢圓中心,![]()
為橢圓的右焦點,
且
,
.![]()
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為
,直線
交橢圓于
兩點,問:是否存在直線
,使點
恰為
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如圖所示,將一矩形花壇
擴建成一個更大的矩形花壇
,要求
點在
上,
點在
上,且對角線
過點
,已知
米,
米.
(1)要使矩形
的面積大于32平方米,則
的長應在什么范圍內?
(2)當
的長度為多少時,矩形花壇
的面積最小?并求出最小值.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com