中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張券中任抽2張,求:
(1)該顧客中獎的概率
(2)該顧客獲得的獎品總價值ξ(元)的概率分布列和數學期望.
分析:(1)由題意首先求出“該顧客沒有中獎的概率”,再根據對立事件的概率之和為1,即可得到“該顧客中獎的概率”.
(2)根據題意可得:ξ的所有可能值為:0,10,20,50,60,再根據古典概型的概率公式分別求出其概率,進而列出ξ的分布列與其期望.
解答:解:(1)由題意可得:該顧客沒有中獎的概率為:
C
2
6
C
2
10
=
1
3

所以該顧客中獎的概率為P=1-
C
2
6
C
2
10
=1-
1
3
=
2
3

即該顧客中獎的概率為
2
3

(2)根據題意可得:ξ的所有可能值為:0,10,20,50,60(元).
所以P(ξ=0)=
C
2
6
C
2
10
=
1
3
,P(ξ=10)=
C
1
3
C
1
6
C
2
10
=
2
5
,P(ξ=20)=
C
2
3
C
2
10
=
1
15
,P(ξ=50)=
C
1
1
C
1
6
C
2
10
=
2
15
,P(ξ=60)=
C
1
1
C
1
3
C
2
10
=
1
15

所以ξ的分布列為:
ξ 0 10 20 50 60
P
1
3
2
5
1
15
2
15
1
15
所以ξ的數學期望為:Eξ=0×
1
3
+10×
2
5
+20×
1
15
+50×
2
15
+60×
1
15
=16.
點評:解決此類問題的關鍵是熟練掌握古典概型的定義與計算公式,以及排列組合與離散型隨機變量的分布列和期望,考查學生利用概率知識解決實際問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎的概率;
(Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張券中任抽2張,求:
(1)該顧客中獎的概率;
(2)求該顧客獲得的獎品總價值不少于50元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

在一次購物抽獎活動中,假設某6張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券1張,每張可獲價值20元的獎品;其余4張沒有獎.某顧客從此6張中任抽1張,求:
(1)該顧客中獎的概率;
(2)該顧客參加此活動可能獲得的獎品價值的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年龍巖一中沖刺文)(12分)

在一次購物抽獎活動中,假設10張獎券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,可獲價值10元的獎品;其余6張沒有獎. 某顧客從此10張獎券中任抽2張,求:

(1)該顧客中獎的概率;

(2)該顧客獲得的獎品總價值不低于20元的概率.

查看答案和解析>>

同步練習冊答案