中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
一般地,在數列{an}中,如果存在非零常數T,使得am+T=am對任意正整數m均成立,那么就稱{an}為周期數列,其中T叫做數列{an}的周期.已知數列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設S2009為其前2009項的和,則當數列{xn}的周期為3時,S2009=
1339+a
1339+a
分析:首先要弄清題意中所說的周期數列的含義,然后利用這個定義,針對題目中的數列的周期由題意和周期定義知,先求x3,再前三項和s3,最后求s2009
解答:解:∵xn+1=|xn-xn-1|(n≥2,n∈N*),
且x1=1,x2=a(a≤1,a≠0),
∴x3=|x2-x1|=1-a
∴該數列的前3項的和s3=1+a+(1-a)=2
∵數列{xn}周期為3,
∴該數列的前2009項的和s2009=s2007+x1+x2=
2007
3
s3+1+a=1339+a,
故答案為1339+a.
點評:本小題主要考查數列具有周期性、數列的前n項和等基礎知識,考查運算求解能力,解答關鍵在于應由題意先求一個周期的和,再求該數列的前n項和sn
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于數列{an},規定{△an}為數列{an}的一階差分數列,其中△an=an+1-an(n∈N*);一般地,規定{△kan}為數列{an}的k階差分數列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數列{an}的通項公式an=
5
2
n2-
13
2
n(n∈N*),試證明{△an}是等差數列;
(Ⅱ)若數列{an}的首項a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數列{an}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=
a1(n=1)
2n-1
an
(n≥2,n∈N*)
,求證:b1+
b2
2
+…+
bn
n
17
12

查看答案和解析>>

科目:高中數學 來源:0117 期中題 題型:解答題

對于數列{an},規定數列{△an}為數列{an}的一階差分數列,其中△an=an+1-an(n∈N*);一般地,規定為{an}的k階差分數列,其中,且
(1)
(2)若數列的首項,且滿足 ,求數列的通項公式;
(3)在(2)的條件下,判斷是否存在最小值,若存在求出其最小值,若不存在說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

一般地,在數列{an}中,如果存在非零常數T,使得am+T=am對任意正整數m均成立,那么就稱{an}為周期數列,其中T叫做數列{an}的周期.已知數列{xn}滿足xn+1=|xn-xn-1|(n≥2,n∈N*),如果x1=1,x2=a,(a≤1,a≠0),設S2009為其前2009項的和,則當數列{xn}的周期為3時,S2009=______.

查看答案和解析>>

科目:高中數學 來源:2011年四川省眉山市高考數學二模試卷(理科)(解析版) 題型:解答題

對于數列{an},規定{△an}為數列{an}的一階差分數列,其中△an=an+1-an(n∈N*);一般地,規定{△kan}為數列{an}的k階差分數列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數列{an}的通項公式an=n2-n(n∈N*),試證明{△an}是等差數列;
(Ⅱ)若數列{an}的首項a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數列{an}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=,求證:b1++…+

查看答案和解析>>

同步練習冊答案