(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
,直線
的參數(shù)方程是
(
為參數(shù))。
求極點(diǎn)在直線
上的射影點(diǎn)
的極坐標(biāo);
若
、
分別為曲線
、直線
上的動(dòng)點(diǎn),求
的最小值。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C:
過點(diǎn)
, 且離心率
.![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點(diǎn)
的動(dòng)直線交橢圓于點(diǎn)
,設(shè)橢圓的左頂點(diǎn)為
連接
且交動(dòng)直線
于
,若以MN為直徑的圓恒過右焦點(diǎn)F,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓右頂點(diǎn)到直線
的距離為
,離心率![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓與y軸負(fù)半軸的交點(diǎn),設(shè)直線
:
,是否存在實(shí)數(shù)m,使直線
與(Ⅰ)中的橢圓有兩個(gè)不同的交點(diǎn)M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
經(jīng)過點(diǎn)
其離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
相交于A、B兩點(diǎn),以線段
為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓
上,
為坐標(biāo)原點(diǎn).求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知拋物線
:
經(jīng)過橢圓
:
的兩個(gè)焦點(diǎn).設(shè)
,又
為
與
不在
軸上的兩個(gè)交點(diǎn),若
的重心(中線的交點(diǎn))在拋物線
上,![]()
(1)求
和
的方程.
(2)有哪幾條直線與
和
都相切?(求出公切線方程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)已知橢圓
的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線
的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線
上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓
的兩焦點(diǎn)在
軸上, 且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成斜邊長(zhǎng)為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)
的動(dòng)直線
交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)Q,使得以AB為直徑的圓恒過點(diǎn)Q ?若存在求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,
的兩個(gè)頂點(diǎn)
、
的坐標(biāo)分別是(-1,0),(1,0),點(diǎn)
是
的重心,
軸上一點(diǎn)
滿足
,且
.
(1)求
的頂點(diǎn)
的軌跡
的方程;
(2)不過點(diǎn)
的直線
與軌跡
交于不同的兩點(diǎn)
、
,當(dāng)
時(shí),求
與
的關(guān)系,并證明直線
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
,
是拋物線
(
為正常數(shù))上的兩個(gè)動(dòng)點(diǎn),直線AB與x軸交于點(diǎn)P,與y軸交于點(diǎn)Q,且![]()
![]()
(Ⅰ)求證:直線AB過拋物線C的焦點(diǎn);
(Ⅱ)是否存在直線AB,使得
若存在,求出直線AB的方程;若不存在,請(qǐng)說明理由。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com