設(shè)橢圓

1(m>0,n>0)的一個焦點與拋物線x
2=4y的焦點相同,離心率為:

則此橢圓的方程為( )
本題考查橢圓和雙曲線的性質(zhì).
由

得其焦點為

橢圓

1(m>0,n>0)的一個焦點與拋物線x
2=4y的焦點相同,則此橢圓的焦點在

軸上,且

,于是有

;
又

,則

,即

,所以

,

.
所以所求的橢圓方程為

.
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(13分)橢圓C:

長軸為8離心率

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C內(nèi)一點M(2,1)引一條弦,使弦被點M平分,
求這條弦所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

過點

,且離心率為

.
(1)求橢圓

的方程;
(2)

為橢圓

的左右頂點,點

是橢圓

上異于

的動點,直線

分別交直線

于

兩點.證明:以線段

為直徑的圓恒過

軸上的定點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
F1,F(xiàn)2是

的左、右焦點,點P在橢圓上運動,則

的最大值是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知P是橢圓

上一點,F(xiàn)1、F2為橢圓兩焦點,若∠F1PF2=90°,則ΔF1PF2的面積等于( )
| A.a(chǎn)2 | B.b2 | C.c2 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓

的離心率為

,若直線

與其一個交點的橫坐標(biāo)為

,則

的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分

)
已知定點

,B是圓

(C為圓心)上的動點,AB的垂直平分線與BC交于點E。
(1)求動點E的軌跡方程;
(2)設(shè)直線

與E的軌跡交于P,Q兩點,且以PQ為對角線的菱形的一頂點為(-1,0),求:

OPQ面積的最大值及此時直線

的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如果方程x2+ky2=2表示焦點在y軸的橢圓,那么實數(shù)k的取值范圍是_________
查看答案和解析>>