已知函數(shù)
.
(1)若函數(shù)滿足
,且在定義域內(nèi)
恒成立,求實數(shù)b的取值范圍;
(2)若函數(shù)
在定義域上是單調(diào)函數(shù),求實數(shù)
的取值范圍;
(3)當(dāng)
時,試比較
與
的大小.
(1)
;(2)
;(3)
.
【解析】
試題分析:(1)先利用
求出
,然后在不等式中分離參數(shù)
,構(gòu)造函數(shù)求
的范圍;(2) 要使
在定義域上是單調(diào)函數(shù),則其導(dǎo)數(shù)
應(yīng)在定義域上恒正或恒負(fù),利用
,求出
的最值,將
在此處斷開討論,求出范圍;(3)由(1)知
在
上單調(diào)遞減,所以
時,
即
,而
時,
,故可得證.
試題解析:(1)因為
,所以
,
,由
1分
令
,可得
在
上遞減,
在
上遞增,所以
,即
4分
(2)若
,![]()
,令![]()
當(dāng)
,
當(dāng)
,
所以
時取得極小值即最小值
而當(dāng)
時
,
必有根,
必有極值,在定義域上不單調(diào).
所以
8分
(3)由(1)知
在
上單調(diào)遞減
所以
時,
即
10分
而
時,
,所以![]()
所以
12分
考點:利用導(dǎo)數(shù)求函數(shù)最值、利用函數(shù)單調(diào)性證明不等式、利用導(dǎo)數(shù)判斷函數(shù)增減性.
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知函數(shù)
.
(1)若
,試確定函數(shù)
的單調(diào)區(qū)間;(2)若
,且對于任意
,
恒成立,試確定實數(shù)
的取值范圍;(3)設(shè)函數(shù)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆寧夏高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)已知函數(shù)
,![]()
(1)若
,求
的單調(diào)區(qū)間;
(2)當(dāng)
時,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省岳陽市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)若
為
的極值點,求實數(shù)
的值;
(2)若
在
上為增函數(shù),求實數(shù)
的取值范圍;
(3)當(dāng)
時,方程
有實根,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省華中師大一附中高三上學(xué)期期中檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
。
(1)若
,求函數(shù)
的值;
(2)求函數(shù)
的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省10-11學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù)
.![]()
(1)若從集合
中任取一個元素
,從集合
中任取一個元素
,求方程
有兩個不相等實根的概率;
(2)若
是從區(qū)間
中任取的一個數(shù),
是從區(qū)間
中任取的一個數(shù),求方程
沒有實根的概率.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com