(本小題共12分)
已知函數
的圖象過點
,且在
內單調遞減,在
上單調遞增。
(1)求
的解析式;
(2)若對于任意的
,不等式
恒成立,試問這樣的
是否存在.若存在,請求出
的范圍,若不存在,說明理由;
(1)f(x)=
x3+
x2-2x+
即為所求.
--------------5分
(2)存在m且m∈[0,1]附合題意
【解析】
試題分析:(1)∵
,--------1分
由題設可知:
即![]()
sinθ≥1, ∴sinθ=1.------3分
從而a=
,∴f(x)=
x3+
x2-2x+c,而又由f(1)=
得c=
.∴f(x)=
x3+
x2-2x+
即為所求.
--------------5分
(2)由
=(x+2)(x-1),
易知f(x)在(-∞,-2)及(1,+∞)上均為增函數,在(-2,1)上為減函數.
①當m>1時,f(x)在[m,m+3]上遞增,故f(x)max=f(m+3), f(x)min=f(m)
由f(m+3)-f(m)=
(m+3)3+
(m+3)2-2(m+3)-
m3-
m2+2m=3m2+12m+
≤
,
得-5≤m≤1.這與條件矛盾. ------------8分
② 當0≤m≤1時,f(x)在[m,1]上遞減, 在[1,m+3]上遞增
∴f(x)min=f(1), f(x)max=max{ f(m),f(m+3) },
又f(m+3)-f(m)= 3m2+12m+
=3(m+2)2-
>0(0≤m≤1)
∴f(x)max= f(m+3)∴|f(x1)-f(x2)|≤f(x)max-f(x)min=
f(m+3)-f(1)≤f(4)-f(1)=
恒成立.
故當0≤m≤1時,原不等式恒成立.----------------11分
綜上,存在m且m∈[0,1]附合題意---------------12分
考點:本題考查了導數的運用
點評:導數本身是個解決問題的工具,是高考必考內容之一,高考往往結合函數甚至是實際問題考查導數的應用,求單調、最值、完成證明等,請注意歸納常規方法和常見注意點.
科目:高中數學 來源: 題型:
. (本小題共12分)已知橢圓E:
的焦點坐
標為
(
),點M(
,
)在橢圓E上
(1)求橢圓E的方程;(2)O為坐標原點,⊙
的任意一條切線與橢圓E有兩個交點
,
且
,求⊙
的半徑。
查看答案和解析>>
科目:高中數學 來源:2011-2012學年內蒙古呼倫貝爾市高三第三次模擬考試文科數學試卷 題型:解答題
(本小題共12分)如圖,已知
⊥平面
,
∥
,
是正三角形,
,且
是
的中點
![]()
(1)求證:
∥平面
;
(2)求證:平面BCE⊥平面
.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年內蒙古呼倫貝爾市高三第三次模擬考試文科數學試卷 題型:解答題
(本小題共12分)某中學的高二(1)班男同學有
名,女同學有
名,老師按照分層抽樣的方法組建了一個
人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數;
(Ⅱ)經過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出
名同學做實驗,該同學做完后,再從小組內剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;
查看答案和解析>>
科目:高中數學 來源:2010-2011學年甘肅省天水市高三上學期第一階段性考試理科數學卷 題型:解答題
(本小題共12分)
如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=![]()
(1)求證:BC1//平面A1DC;
(2)求二面角D—A1C—A的大小
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com