中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)=2+x2cos(
π
2
+x)在[-a,a](a>0)
上的最大值與最小值分別為M、m,則M+m的值為(  )
分析:化簡可得f(x)=2-x2sinx,構造函數g(x)=f(x)-2,可得g(x)為奇函數,圖象關于原點(0,0)對稱,從而可得f(x)的圖象關于(2,0)對稱,利用對稱性可得M+m=4
解答:解:∵f(x)=2+x2cos(x+
π
2
)=2-x2sinx

∴f(x)-2=-x2sinx,令g(x)=-x2sinx,則g(-x)=-g(x)
所以g(x)為奇函數,圖象關于原點(0,0)對稱,從而g(x)的圖象關于(2,0)對稱
所以M+m=4
故選 C
點評:本題主要考查了圖象對稱性的運用,若函數圖象關于(a,0)對稱,圖象上關于(a,b)對稱的兩點((x1,y1),(x2,y2),則x1+x2=2a,y1+y2=2b
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•鹽城一模)已知f(x)=(2+
x
)n
,其中n∈N*
(1)若展開式中含x3項的系數為14,求n的值;
(2)當x=3時,求證:f(x)必可表示成
s
+
s-1
(s∈N*)的形式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知f(
x
+1)=x+2
,求函數f(x)的解析式;
(2)若二次函數f(x)滿足f(x+1)-f(x)=2x且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
2-x,(x≤0)
x2,(x>0)
,若f(x)=1,則x的值是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在(0,+∞)上的函數,且對任意正數x,y都有f(xy)=f(x)+f(y),且當x>1時,f(x)>0.
(1)證明f(x)在(0,+∞)上為增函數;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年河北省高三8月月考理科數學試卷(解析版) 題型:解答題

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習冊答案