中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數)。
⑴若,求上的最大值和最小值;
⑵若對任意,都有,求的取值范圍;
⑶若上的最大值為,求的值。

(1)最大值為3,最小值為-1;(2);(3)

解析試題分析:(1)是三次函數,要求它的最大值和最小值一般利用導數來求,具體的就是令,求出,再討論相應區間的單調性,就可判斷出函數什么時候取最大值,什么時候取最小值;(2)要求的取值范圍,題中沒有其他的信息,因此我們首先判斷出的初始范圍,由已知有,得出,而此時上的單調性不確定,通過討論單調性,求出上的最大值和最小值,為什么要求最大值和最小值呢?原因就在于題設條件等價于最大值與最小值的差,這樣就有求出的取值范圍了;(3)對上的最大值為的處理方法,同樣我們用特殊值法,首先,即,由這兩式可得,而特殊值,又能得到,那么只能有,把代入,就可求出
試題解析:(1),∴,         2分
∴在內,,在內,
∴在內,為增函數,在內,為減函數,
的最大值為,最小值為,         4分
(2)∵對任意,∴
從而有,∴.         6分
,∴內為減函數,在內為增函數,只需,則
的取值范圍是          10分[
(3)由②,
①加②得又∵      14分
代入①②得               16分
考點:(1)函數的最值;(2)導數的應用;(3)含絕對值的函數的最大值與不等式的綜合知識.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若,且對于任意恒成立,試確定實數的取值范圍;
(Ⅱ)設函數,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中).
(Ⅰ)若的極值點,求的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式
(Ⅲ)若函數在區間上單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,若時,有極小值
(1)求實數的取值;
(2)若數列中,,求證:數列的前項和
(3)設函數,若有極值且極值為,則是否具有確定的大小關系?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.若函數依次在處取到極值.
(1)求的取值范圍;
(2)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數

(Ⅰ)若曲線處的切線相互平行,求的值及切線斜率;
(Ⅱ)若函數在區間上單調遞減,求的取值范圍;
(Ⅲ)設函數的圖像C1與函數的圖像C2交于P、Q兩點,過線段PQ的中點作x軸的垂線分別交C1C2于點M、N,證明:C1在點M處的切線與C2在點N處的切線不可能平行.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=aex,g(x)=lnx-lna,其中a為常數, e=2.718…,且函數y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數a的值;
(2)若存在x使不等式>成立,求實數m的取值范圍;
(3)對于函數y=f(x)和y=g(x)公共定義域內的任意實數x0,我們把|f(x0)-g(x0)|的值稱為兩函數在x0處的偏差.求證:函數y=f(x)和y=g(x)在其公共定義域內的所有偏差都大于2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)若,求函數的極值,并指出是極大值還是極小值;
(Ⅱ)若,求證:在區間上,函數的圖像在函數的圖像的下方.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ)討論函數的單調性;
(Ⅱ)設,證明:對任意,總存在,使得.

查看答案和解析>>

同步練習冊答案