中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知a,b,c分別為△ABC的三個內角A,B,C的對邊,=(sinA,1),=(cosA,),且

(1)求角A的大小;

(2)若a=2,b=2,求△ABC的面積.

 

【答案】

(1);(II)△ABC的面積為.    

【解析】

試題分析:(1)根據向量平行的坐標運算解答;(2)由(1)得出角A的大小,利用正弦定理計算,計算角大小,然后利用三角形中計算角,根據三角形面積公式解答即可.

試題解析:(1)  4分

(2)由正弦定理可得,.         6分

時,

;           9分

時,

.             11分

故,△ABC的面積為.         12分

考點:平面向量的坐標運算、正弦定理、解三角形、三角形面積公式.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a,b,c分別為△ABC的三個內角A,B,C的對邊,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面積為
3
,求a,c.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c分別為△ABC三個內角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面積為
3
,證明△ABC是正三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•鄭州一模)已知a,b,c分別為△ABC三個內角A,B,C的對邊,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面積為
3
,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•靜安區一模)已知a,b,c分別為△ABC三個內角A、B、C所對的邊長,a,b,c成等比數列.
(1)求B的取值范圍;
(2)若x=B,關于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c分別為△ABC三個內角A,B,C的對邊,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面積S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步練習冊答案