已知函數f(x)=3x2+bx+1是偶函數,g(x)=5x+c是奇函數,正數數列{an}滿足a1=1,f(an+an+1)-g(an+1an+an2)=1.
(1)求{an}的通項公式;
(2)若{an}的前n項和為Sn,求Sn.
分析:先根據函數f(x)=3x
2+bx+1是偶函數,g(x)=5x+c是奇函數,判斷b=0,c=0進而可得函數f(x)和g(x)的解析式,進而根據f(a
n+a
n+1)-g(a
na
n+1+a
n2)=1求得
=
進而判斷出數列{a
n}是以1為首項,
為公比的等比數列,則數列的通項公式可得,進而根據等比數列的求和公式求得S
n.
解答:解:∵函數f(x)=3x
2+bx+1是偶函數,g(x)=5x+c是奇函數,
∴b=0,c=0
∴f(x)=3x
2+1 g(x)=5x
∵f(a
n+a
n+1)-g(a
na
n+1+a
n2)=1
∴整理得(3a
n+1-2a
n)(a
n+a
n)=0
∵正數數列
∴3a
n+1-2a
n=0,即
=
∴數列{a
n}是以1為首項,
為公比的等比數列
∴通項公式a
n=(
)
n-1
∴S
n=3[1-(
)
n]
點評:本題主要考查了用數列的遞推式求得數列的通項公式和求和問題.解題的關鍵是通過函數解析式找到an+1和an的關系.