中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(福建卷理22)已知函數f(x)=ln(1+x)-x1

 (Ⅰ)求f(x)的單調區間;

(Ⅱ)記f(x)在區間n∈N*)上的最小值為bxan=ln(1+n)-bx.

(Ⅲ)如果對一切n,不等式恒成立,求實數c的取值范圍;

(Ⅳ)求證:  

【標準答案】解法一:

(I)因為f(x)=ln(1+x)-x,所以函數定義域為(-1,+),且f〃(x)=-1=.

f〃(x)>0得-1<x<0,f(x)的單調遞增區間為(-1,0);

f〃(x)<0得x>0,f(x)的單調遞增區間為(0,+).

(II)因為f(x)在[0,n]上是減函數,所以bn=f(n)=ln(1+n)-n,

an=ln(1+n)-bn=ln(1+n)-ln(1+n)+n=n.

(i)

>

又lim,

因此c<1,即實數c的取值范圍是(-,1).

(II)由(i)知

N*)

解法二:(Ⅰ)同解法一.

(Ⅱ)因為f(x)在上是減函數,所以

   則

(i)因為n∈N*恒成立.所以n∈N*恒成立.

  則n∈N*恒成立.

  設 n∈N*,則cg(n)對n∈N*恒成立.

  考慮

  因為=0,

  所以內是減函數;則當n∈N*時,g(n)隨n的增大而減小,

又因為=1.

所以對一切因此c≤1,即實數c的取值范圍是(-∞,1].

(ⅱ) 由(ⅰ)知

     下面用數學歸納法證明不等式

     ①當n=1時,左邊=,右邊=,左邊<右邊.不等式成立.

     ②假設當n=k時,不等式成立.即

n=k+1時,

=

即n=k+1時,不等式成立

綜合①、②得,不等式成立.

所以

.

【試題解析】

【高考考點】本小題主要考查函數的單調性、最值、不等式、數列等基本知識,考查運用導數研究函數性質的方法,考查分析問題和解決問題的能力,滿分14分.

【易錯提醒】第一問中導數記不住公式

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(福建卷理22)已知函數f(x)=ln(1+x)-x1

 (Ⅰ)求f(x)的單調區間;

(Ⅱ)記f(x)在區間n∈N*)上的最小值為bxan=ln(1+n)-bx.

(Ⅲ)如果對一切n,不等式恒成立,求實數c的取值范圍;

(Ⅳ)求證:  

查看答案和解析>>

同步練習冊答案