過雙曲線![]()
的左焦點![]()
,作傾斜角為
的直線
交該雙曲線右支于點
,若
,且
,則雙曲線的離心率為__________.
科目:高中數學 來源: 題型:解答題
已知橢圓
=1(a>b>0)的離心率為
,且過點P
,A為上頂點,F為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.![]()
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
P為圓A:
上的動點,點
.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且
時,求點M的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為
.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.
(3)若點M的橫坐標為
,直線l:y=kx+
與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當
≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程.
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于
?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com