中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)當時,求函數的單調區間;
(2)若函數處取得極值,對,恒成立,求實數的取值范圍;
(3)當時,求證:

(1)上遞減,在上遞增;(2)(3)

解析試題分析:(1)時,。先求導并通分整理,再令導數大于0得增區間,令導數小于0得減區間。(2)先求導,因為函數處取得極值,則,可得的值。對,恒成立等價于恒成立,令,求導,討論導數的符號,可得函數的單調性,根據單調性可得函數的最值,則。(3),令,因為則只要證明上單調遞增。即證在恒成立。將函數求導,分析其導數的單調性,根據其單調性求最值,證得即可。
(1)
得0<x<,得x>
上遞減,在上遞增.
(2)∵函數處取得極值,∴,  
,   
,可得上遞減,在上遞增,
,即.
(3)證明:
,則只要證明上單調遞增,
又∵
顯然函數上單調遞增.
,即
上單調遞增,即
∴當時,有
考點:1用導數研究函數的單調性及最值;2轉化思想。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,用鐵絲彎成一個上面是半圓,下面是矩形的圖形,其面積為
為使所用材料最省,底寬應為多少米?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中.
(1)求函數的定義域(用區間表示);
(2)討論函數上的單調性;
(3)若,求上滿足條件的集合(用區間表示).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求證:函數在(1,+∞)上是增函數;
(2)當時,求函數在[1,e]上的最小值及相應的x值;
(3)若存在[l,e],使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線處的切線方程是.
(1)求的解析式;
(2)求曲線過點的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax+x2-xln a(a>0,a≠1).
(1)求函數f(x)在點(0,f(0))處的切線方程;
(2)求函數f(x)的單調增區間;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數的底數),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

函數
(1)時,求最小值;
(2)若是單調減函數,求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(13分)已知函數的圖象在點處的切線垂直于軸.
(1)求實數的值;
(2)求的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數在點處的切線方程;
(2)求函數的單調區間.

查看答案和解析>>

同步練習冊答案