中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設f(x)是定義在R上的奇函數,且f(2)=0,當x>0時,有xf′(x)-f(x)<0恒成立,則不等式x2f(x)>0的解集是( 。
A、(-∞,-2)∪(0,2)B、(-2,0)∪(2,+∞)C、(-2,2)D、(-∞,-2)∪(2,+∞)
分析:根據函數求導法則,把x>0時xf′(x)-f(x)<0轉化為
f(x)
x
在(0,+∞)內單調遞減;
由f(2)=0,得f(x)在(0,+∞)內的正負性;
由奇函數的性質,得f(x)在(-∞,0)內的正負性.
從而求得x2f(x)>0的解集.
解答:解:∵當x>0時,xf′(x)-f(x)<0,
xf(x)-f(x)
x2
<0,即[
f(x)
x
]′<0,
f(x)
x
在(0,+∞)內單調遞減.
∵f(2)=0,
∴在(0,2)內f(x)>0;在(2,+∞)內f(x)<0.
又∵f(x)是R上的奇函數,
∴在(-∞,-2)內f(x)>0;在(-2,0)內f(x)<0.
又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.
∴解集為(-∞,-2)∪(0,2).
故選:A.
點評:本題考查了不等式解集的求法,解題的關鍵是應用求導法則以及函數的單調性、奇偶函數得出f(x)在定義域上的正負性,是易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

3、設f(x)是定義在R上的奇函數,且f(3)+f(-2)=2,則f(2)-f(3)=
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的偶函數,當x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且f(1)=0,當x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且y=f(x)滿足f(1-x)=f(x),且f( 
1
2
 )=2
,則f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,且對任意實數x,恒有f(x+2)=-f(x).當x∈[0,2]時,f(x)=2x-x2+a(a是常數).則x∈[2,4]時的解析式為( 。
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步練習冊答案