中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

(本題滿分18分)本題共3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數列滿足.
,求的取值范圍;
是公比為等比數列,的取值范圍;
成等差數列,且,求正整數的最大值,以及取最大值時相應數列的公差.

(1);(2);(3)的最大值為1999,此時公差為.

解析試題分析:(1)比較容易,只要根據已知列出不等式組,即可解得;(2)首先由已知得不等式,即,可解得。又有條件,這時還要忘記分類討論,時,,滿足,當時,有,解這不等式時,分類,分進行討論;(3)由已知可得∴,∴,這樣我們可以首先計算出的取值范圍是,再由,可得,從而,解得,即最大值為1999,此時可求得
試題解析:(1)由題得,
(2)由題得,∵,且數列是等比數列,
,∴,∴.
又∵,∴當時,恒成立,滿足題意.
時,
∴①當時,,由單調性可得,,解得,
②當時,,由單調性可得,,解得,
(3)由題得,∵,且數列成等差數列,
,∴,
所以時,時,,所以

又∵,∴
,∴,解得,
的最大值為1999,此時公差為
【考點】解不等式(組),數列的單調性,分類討論,等差(比)數列的前項和.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知等差數列的前n項和為,且
(1)求數列的通項公式;
(2)設,求數列的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前n項和為,且,令.
(1)求證:數列是等差數列,并求數列的通項公式;
(2)若,用數學歸納法證明是18的倍數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列滿足:,(≥3),記
(≥3).
(1)求證數列為等差數列,并求通項公式;
(2)設,數列{}的前n項和為,求證:<<.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和.
(1)求數列的通項公式;
(2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an
(2)設Sn為{an}的前n項和,求Sn的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列是等差數列,數列是各項都為正數的等比數列,且

(1)求數列,數列的通項公式;
(2)求數列的前n項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知實數,且按某種順序排列成等差數列.
(1)求實數的值;
(2)若等差數列的首項和公差都為,等比數列的首項和公比都為,數列的前項和分別為,且,求滿足條件的自然數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(2013·安徽高考)設數列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數f(x)=x+an+1cos x-an+2sin x滿足f′=0.
(1)求數列{an}的通項公式;
(2)若bn=2,求數列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案