中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

<sup id="tt5en"></sup>
    設(shè)f(x)=ax2+bx+c(a,b,c為實(shí)常數(shù)),f(0)=1,
    (Ⅰ)若f(-2)=0,且對任意實(shí)數(shù)x均有f(x)≥0成立,求g(x)的表達(dá)式;
    (Ⅱ)在(Ⅰ)的條件下,若h(x)=f(x)+kx不是[-2,2]上的單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
    (Ⅲ)設(shè)a>0,m>0,n<0且m+n>0,當(dāng)f(x)為偶函數(shù)時(shí),求證:g(m)+g(n)<0.
    【答案】分析:(Ⅰ)根據(jù)題意,由f(0)=1可得c=1;再由f(-2)=0可得4a-2b+1=0,進(jìn)而又由f(x)≥0對x∈R恒成立,知a>0且△=b2-4a≤0;與4a-2b+1=0聯(lián)立可得(b-1)2≤0,即可得b、a的值;由a、b、c的值可得f(x)的解析式,進(jìn)而可得g(x)的解析式;
    (Ⅱ)由(Ⅰ)知h(x)的解析式,分析可得其圖象的對稱軸為x=-2(k+1),再由題意,結(jié)合二次函數(shù)的性質(zhì),可得-2<-2(k+1)<2,解可得答案;
    (Ⅲ)根據(jù)f(x)為偶函數(shù),可得b=0,即可得f(x)=ax2+1,又由a>0,由二次函數(shù)的奇偶性可得g(x)在(0,+∞)上為減函數(shù);又由題意,對m、n的關(guān)系變形可得m>-n>0,可得證明.
    解答:解:(Ⅰ)由f(0)=c=1,則c=1,
    由f(-2)=0得4a-2b+1=0,
    又由f(x)≥0對x∈R恒成立,知a>0且△=b2-4a≤0,
    即b2-2b+1=(b-1)2≤0,

    從而
    (Ⅱ)由(Ⅰ)知,其圖象的對稱軸為x=-2(k+1),
    再由h(x)在[-2,2]上不是單調(diào)函數(shù),
    故得-2<-2(k+1)<2,
    解可得-2<k<0,
    (Ⅲ)證明:若f(x)為偶函數(shù),則f(-x)=f(x),
    則b=0,
    ∴f(x)=ax2+1,
    又由a>0,則f(x)在(0,+∞)上為增函數(shù),
    從而可得g(x)在(0,+∞)上為減函數(shù),
    又m>0,n<0,m+n>0,
    ∴m>-n>0,從而g(m)<g(-n)
    且g(-n)=-f(-n)=-f(n)=-g(n)
    故得g(m)<-g(n),
    因此,g(m)+g(n)<0.
    點(diǎn)評:本題考查函數(shù)奇偶性的應(yīng)用,涉及二次函數(shù)的性質(zhì),解題時(shí)要充分利用二次函數(shù)的性質(zhì)和函數(shù)奇偶性的性質(zhì).
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    13、設(shè)f(x)=ax2+bx+c(a≠0),對于任意-1≤x≤1,有f(x)|≤1;求證|f(2)|≤7.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    對于函數(shù)f(x),其定義域?yàn)镈,若任取x1、x2∈D,且x1≠x2,若f(
    x1+x2
    2
    )>
    1
    2
    [f(x1)+f(x2)],則稱f(x)為定義域上的凸函數(shù).
    (1)設(shè)f(x)=ax2(a>0),試判斷f(x)是否為其定義域上的凸函數(shù),并說明原因;
    (2)若函數(shù)f(x)=㏒ax(a>0,且a≠1)為其定義域上的凸函數(shù),試求出實(shí)數(shù)a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)f(x)=ax2+x-a,g(x)=2ax+5-3a
    (1)若f(x)在x∈[0,1]上的最大值是
    54
    ,求a的值;
    (2)若對于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍;
    (3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    對于給定正數(shù)k,定fk(x)=
    f(x)   (f(x)≤k)
    k    (f(x)>k)
    ,設(shè)f(x)=ax2-2ax-a2+5a+2,對任意x∈R和任意a∈(-∞,0)恒有fk(x)=
    f(x)
    ,則(  )

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2013•閔行區(qū)二模)設(shè)f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,則f(2)的最大值為
    14
    14

    查看答案和解析>>

    同步練習(xí)冊答案