中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知雙曲線的中心為原點,左、右焦點分別為,離心率為,點是直線上任意一點,點在雙曲線上,且滿足.
(1)求實數的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點的縱坐標為,過點作動直線與雙曲線右支交于不同的兩點,在線段上去異于點的點,滿足,證明點恒在一條定直線上.
(1);(2)詳見解析;(3)詳見解析.

試題分析:(1)根據雙曲線的離心率列方程求出實數的值;(2)設點的坐標為,點的坐標為,利用條件確定之間的關系,再結合點在雙曲線上這一條件,以及斜率公式來證明直線與直線的斜率之積是定值;(3)證法一是先設點的坐標分別為,結合(2)得到,引入參數,利用轉化為相應的條件,利用坐標運算得到點的坐標所滿足的關系式,進而證明點恒在定直線上;證法二是設直線的方程為,將直線的方程與雙曲線的方程聯立,結合韋達定理,將條件進行等價轉化為,結合韋達定理化簡為,最后利用點在直線上得到,從而消去得到
,進而證明點恒在定直線上.
試題解析:(1)根據雙曲線的定義可得雙曲線的離心率為,由于,解得
故雙曲線的方程為
(2)設點的坐標為,點的坐標為,易知點

,因此點的坐標為
故直線的斜率,直線的斜率為
因此直線與直線的斜率之積為
由于點在雙曲線上,所以,所以
于是有
(定值);
(3)證法一:設點 且過點的直線與雙曲線的右支交于不同的兩點,由(2)知,
,則,即
整理得
由①③,②④得,
,代入⑥得,⑦,
將⑦代入⑤得,即點恒在定直線上;
證法二:依題意,直線的斜率存在,設直線的方程為

消去
因為直線與雙曲線的右支交于不同的兩點
則有
設點,由,得
整理得
將②③代入上式得
整理得,④
因為點在直線上,所以,⑤
聯立④⑤消去,所以點恒在定直線.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

,若直線與線段AB沒有公共點,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知線段PQ兩端點的坐標分別為(-1,1)、(2,2),若直線l:x+my+m=0與線段PQ有交點,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如果三條直線l1,l2,l3的傾斜角分別為α1,α2,α3,其中l1:x-y=0,l2:x+2y=0,l3:x+3y=0,則α1,α2,α3從小到大的排列順序為____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知直線l的傾斜角為π,直線l1經過點A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線x+(a2+1)y+1=0的傾斜角的取值范圍是(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩點,點軸或軸上,若,則這樣的點的個數為
A. B.  C.   D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線的傾斜角是(       )
A.300B.600 C.1200D.1350

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線的傾斜角的大小為         

查看答案和解析>>

同步練習冊答案