設數列{an}前n項和為Sn,數列{Sn}的前n項和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值.
(2)求數列{an}的通項公式.
科目:高中數學 來源: 題型:解答題
已知數列
,
滿足
,
,
,
.
(1)求證:數列
是等差數列,并求數列
的通項公式;
(2)設數列
滿足
,對于任意給定的正整數
,是否存在正整數
,
(
),使得
,
,
成等差數列?若存在,試用
表示
,
;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲、乙兩大超市同時開業,第一年的全年銷售額均為a萬元,由于經營方式不同,甲超市前n年的總銷售額為
(n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多
a萬元.
(1)設甲、乙兩超市第n年的銷售額分別為an、bn,求an、bn的表達式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現在第幾年?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知數列{an}的前n項和為Sn,且Sn=2an-1;數列{bn}滿足bn-1-bn=bnbn-1(n≥2,n∈N*),b1=1.
(1)求數列{an},{bn}的通項公式;
(2)求數列
的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
數列{an}中,a1=3,an+1=an+cn(c是常數,n=1,2,3,…),且a1,a2,a3成公比不為1的等比數列.
(1)求c的值;
(2)求數列{an}的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*,p與q垂直,且a1=1.
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足bn=log2an+1,求數列{an·bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com