中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
“數學史與不等式選講”模塊
(1)用數學歸納法證明不等式:|sinnθ|≤n|sinθ|(n∈N*
(2)求函數f(x)=sin3xcosx,x∈(0,
π2
)的最大值.
分析:(1)先證明n=1時成立,計算n=k時,命題成立,利用放縮法,證明n=k+1時,命題成立;
(2)求導函數,取得函數的單調性,即可求得函數的最大值.
解答:(1)證明:①n=1時,|sinθ|≤|sinθ|成立;
②假設n=k時,命題成立,即|sinkθ|≤k|sinθ|成立
則n=k+1時,|sin(k+1)θ|=|sinkθcosθ+sinθcoskθ|≤|sinkθ+sinθ|≤(k+1)|sinθ|
即n=k+1時,命題成立
綜上,|sinnθ|≤n|sinθ|(n∈N*
(2)解:求導函數可得f′(x)=sin2x(3cos2x-sin2x)
∵x∈(0,
π
2
),∴令f′(x)=0,可得x=
π
3

∵x∈(0,
π
3
),f′(x)>0,函數單調遞增;x∈(
π
3
π
2
),f′(x)<0,函數單調遞減
∴x=
π
3
時,函數取得最大值
3
3
16
點評:本題考查數學歸納法,考查導數知識的運用,正確運用導數知識,掌握數學歸納法的證題步驟是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在“自選模塊”考試中,某試場的每位同學都選了一道數學題,第一小組選《數學史與不等式選講》的有1人,選《矩陣變換和坐標系與參數方程》的有5人,第二小組選《數學史與不等式選講》的有2人,選《矩陣變換和坐標系與參數方程》的有4人,現從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標系與參數方程》的概率;
(Ⅱ)設ξ為選出的4個人中選《數學史與不等式選講》的人數,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

在“自選模塊”考試中,某試場的每位同學都選了一道數學題,第一小組選《數學史與不等式選講》的有1人,選《矩陣變換和坐標系與參數方程》的有5人,第二小組選《數學史與不等式選講》的有2人,選《矩陣變換和坐標系與參數方程》的有4人,現從第一、第二兩小組各任選2人分析得分情況.

   (Ⅰ)求選出的4 人均為選《矩陣變換和坐標系與參數方程》的概率;

   (Ⅱ)設為選出的4個人中選《數學史與不等式選講》的人數,求的分布列和

    數學期望.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省高三下學期第一次綜合練習理科數學 題型:解答題

“數學史與不等式選講”模塊已知為正實數,且.

(Ⅰ)證明:

(Ⅱ)求的最小值.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省三校高三聯考理科數學 題型:解答題

數學自選模塊

題號:03

“數學史與不等式選講”模塊(10分)

已知函數,且,對于定義域內的任意實數

(1)設時,S取得最小值,求ab的值;(2)在(1)的條件下,證明:對任意成立.

 

查看答案和解析>>

同步練習冊答案