中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

某海域有兩個島嶼,島在島正東4海里處。經多年觀察研究發現,某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發現過魚群。以所在直線為軸,的垂直平分線為軸建立平面直角坐標系。

(1)求曲線的標準方程;(6分)
(2)某日,研究人員在兩島同時用聲納探測儀發出不同頻率的探測信號(傳播速度相同),兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)

(1) ;(2)點的坐標為

解析試題分析:(1)由題意知曲線是以為焦點且長軸長為8的橢圓         3分
,則,故                     5分
所以曲線的方程是                           6分
(2)由于兩島收到魚群發射信號的時間比為
因此設此時距兩島的距離分別比為             7分
即魚群分別距兩島的距離為5海里和3海里。       8分
,由 ,    10分
,                                     12分 
                                     13分
的坐標為                 14分
考點:本題主要考查橢圓的定義、標準方程,橢圓與圓的位置關系。
點評:中檔題,利用橢圓的定義,明確曲線是橢圓并求得其標準方程為,作為實際問題解決,很好的體現了數學的妙用。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分12分)
在平面直角坐標系xOy中,拋物線C的頂點在原點,經過點A(2,2),其焦點F在x軸上.
(1)求拋物線C的標準方程;
(2)設直線l是拋物線的準線,求證:以AB為直徑的圓與準線l相切.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知點是橢圓的右頂點,若點在橢圓上,且滿足.(其中為坐標原點)

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分) 已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過,設點.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段中點的軌跡方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

.已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為為雙曲線上一點(不同于),直線分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知中心在原點,焦點在坐標軸上的橢圓,它的離心率為,一個焦點和拋物線的焦點重合,過直線上一點M引橢圓的兩條切線,切點分別是A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點處的橢圓的切線方程是. 求證:直線恒過定點;并出求定點的坐標.
(Ⅲ)是否存在實數,使得恒成立?(點為直線恒過的定點)若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知橢圓經過點,且其右焦點與拋物線的焦點F重合.
(Ⅰ)求橢圓的方程;
(II)直線經過點與橢圓相交于A、B兩點,與拋物線相交于C、D兩點.求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題16分)設雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)設橢圓C1的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標原點),如圖.若拋物線C2軸的交點為B,且經過F1,F2點.

(Ⅰ)求橢圓C1的方程;
(Ⅱ)設M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求面積的最大值.

查看答案和解析>>

同步練習冊答案