中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數f(x)=2x3-3(a-1)x2+1,其中a≥1.求函數f(x)的單調區間和極值.

詳見解析.

解析試題分析:(1)先求導數fˊ(x),求出f′(x)=0的值,然后討論a=1與a>1兩種情形,再討論滿足f′(x)=0的點附近的導數的符號的變化情況,從而的函數f(x)的單調區間;(2)討論a=1與a>1兩種情形,根據(1)可知f′(x)=0的點附近的導數的符號的變化情況,從而的函數f(x)的極值.
由已知得f(x)=6x[x-(a-1)],令f(x)=0,解得 x1=0,x2=a-1,.
(1)當a=1時,f(x)=6x2,f(x)在(-∞,+∞)上單調遞增
當a>1時,f(x)=6x[x-(a-1)],f(x),f(x)隨x的變化情況如下表:

x
(-∞,0)
0
(0,a-1)
a-1
(a-1,+∞)
f?(x)

0

0

f(x)

極大值

極小值

 
從上表可知,函數f(x)在(-∞,0)上單調遞增;在(0,a-1)上單調遞減;在(a-1,+∞)上單調遞增.
(2)由(1)知,當a=1時,函數f(x)沒有極值.;當a>1時,函數f(x)在x=0處取得極大值,在x=a-1處取得極小值1-(a-1)3
考點:利用導數研究函數的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線方程為
(1)求的值;
(2)如果當,且時,,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)試判斷函數的單調性,并說明理由;
(2)若恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)
(1)求的解析式;
(2)設,求證:當時,且恒成立;
(3)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當 時,求處的切線方程;
(2)設函數
(ⅰ)若函數有且僅有一個零點時,求的值;
(ⅱ)在(ⅰ)的條件下,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)設函數,當時,討論的單調性;
(2)若函數處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時取得極小值.
(1)求實數的值;
(2)是否存在區間,使得在該區間上的值域為?若存在,求出的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數的定義域是,其中常數.
(1)若,求的過原點的切線方程.
(2)當時,求最大實數,使不等式恒成立.
(3)證明當時,對任何,有.

查看答案和解析>>

同步練習冊答案