中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
某種商品一年內每件出廠價在7千元的基礎上,按月呈f(x)=Asin(ωx+?)+B(A>0,ω>0,|φ|<
π
2
)
的模型波動(x為月份),已知3月份達到最高價9千元,7月份價格最低為5千元,根據以上條件可確定f(x)的解析式為( 。
分析:根據3月份達到最高價9千元,7月份價格最低為5千元,可求A,B的值,根據周期可得ω的值,利用最值點,可求φ的值,從而可得函數的解析式.
解答:解:∵3月份達到最高價9千元,7月份價格最低為5千元,
∴當x=3時,函數有最大值為9;當x=7時,函數有最小值5
A+B=9 
-A+B=5
,∴A=2,B=7
∵函數的周期T=2(7-3)=8,
∴由T=
ω
,得ω=
T
=
π
4

∵當x=3時,函數有最大值,
∴3ω+φ=
π
2
+2kπ,即φ=-
π
4
+2kπ,
∵|φ|<
π
2
,取k=0,得φ=-
π
4

∴f(x)的解析式為:f(x)=2sin(
π
4
x-
π
4
)+7(1≤x≤12,x∈N*
故選D.
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查了數學應用能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

據市場調查,某種商品一年內每件出廠價在6千元的基礎上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(x為月份),已知3月份達到最高價8千元,7月份價格最低為4千元;該商品每件的售價為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫出該商品每件的出廠價函數f(x)、售價函數g(x)的解析式;
(2)問哪幾個月能盈利?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

據市場調查,某種商品一年內每件出廠價在6千元的基礎上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(x為月份),已知3月份達到最高價8千元,7月份價格最低為4千元;該商品每件的售價為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫出該商品每件的出廠價函數f(x)、售價函數g(x)的解析式;
(2)問哪幾個月能盈利?

查看答案和解析>>

科目:高中數學 來源:《5.4 三角函數模型的簡單應用》2013年高考數學優化訓練(理科)(解析版) 題型:解答題

據市場調查,某種商品一年內每件出廠價在6千元的基礎上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(x為月份),已知3月份達到最高價8千元,7月份價格最低為4千元;該商品每件的售價為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫出該商品每件的出廠價函數f(x)、售價函數g(x)的解析式;
(2)問哪幾個月能盈利?

查看答案和解析>>

科目:高中數學 來源:2007年上海市浦東新區高考數學一模試卷(文科)(解析版) 題型:解答題

據市場調查,某種商品一年內每件出廠價在6千元的基礎上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(x為月份),已知3月份達到最高價8千元,7月份價格最低為4千元;該商品每件的售價為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫出該商品每件的出廠價函數f(x)、售價函數g(x)的解析式;
(2)問哪幾個月能盈利?

查看答案和解析>>

科目:高中數學 來源:2007年上海市浦東新區高考數學一模試卷(理科)(解析版) 題型:解答題

據市場調查,某種商品一年內每件出廠價在6千元的基礎上,按月呈f(x)=Asin(ωx+φ)+B的模型波動(x為月份),已知3月份達到最高價8千元,7月份價格最低為4千元;該商品每件的售價為g(x)(x為月份),且滿足g(x)=f(x-2)+2.
(1)分別寫出該商品每件的出廠價函數f(x)、售價函數g(x)的解析式;
(2)問哪幾個月能盈利?

查看答案和解析>>

同步練習冊答案