中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
定義域為(-∞,0]的函數f(x)滿足關系f(x-1)=x2-2x,則f-1(-
1
2
)
=______.
設x-1=t,則x=t+1,
∴f(t)=(t+1)2-2(t+1)
=t2-1.
由題設知
t2-1=-
1
2
t≤0
,
∴t=-
2
2

f-1(-
1
2
)
=-
2
2

故答案為:-
2
2
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)的定義域為D={x|x≠0,x∈R},且滿足對于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結論;
(3)當f(4)=1,f(x)在(0,+∞)上是增函數時,若f(x-1)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若f(x)=
1
log2(2x+1)
,則f(x)的定義域為
-
1
2
,0
)∪(0,+∞)
-
1
2
,0
)∪(0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數,當x>0時f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時的表達式;
(2)求f(x)在x<0時的表達式;
(3)若關于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數,當x>0時,f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0時的表達式;
(3)若關于x的方程f(x)=ax,(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1-2x
,則( 。

查看答案和解析>>

同步練習冊答案