已知橢圓
的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓
的方程;
(2)已知直線
與橢圓
交于
、
兩點(diǎn),試問(wèn),是否存在
軸上的點(diǎn)
,使得對(duì)任意的
,
為定值,若存在,求出
點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
(1)
;(2)存在點(diǎn)
使得
為定值.
解析試題分析:(1)橢圓的標(biāo)準(zhǔn)方程是
,則本題中有
,已知三角形的面積為4,說(shuō)明
,這樣可以求得
;(2)存在性命題的解法都是假設(shè)存在,然后想辦法求出
.下面就是想法列出關(guān)于
的方程,本題是直線與橢圓相交問(wèn)題,一般方法是設(shè)交點(diǎn)為
,把直線方程
代入橢圓方程交化簡(jiǎn)為
,則有
,
,而![]()
,就可用
表示,這個(gè)值為定值,即與
無(wú)關(guān),分析此式可得出結(jié)論..
試題解析:(1)設(shè)橢圓的短半軸為
,半焦距為
,
則
,由
得
,
由
解得
,則橢圓方程為
. (6分)
(2)由
得
設(shè)
由韋達(dá)定理得:
![]()
![]()
=![]()
=
=
, (10分)
當(dāng)
,即
時(shí),![]()
為定值,所以,存在點(diǎn)
使得
為定值(14分).
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長(zhǎng)等于
的長(zhǎng)半軸長(zhǎng)。![]()
(1)求
,
的方程;
(2)設(shè)
與
軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線
與
相交于點(diǎn)A,B,直線MA,MB分別與
相交與D,E.
①證明:
;
②記△MAB,△MDE的面積分別是
.問(wèn):是否存在直線
,使得
=
?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(1)求橢圓
的方程;
(2)設(shè)
,過(guò)點(diǎn)
作直線
(不與
軸重合)交橢圓于
、
兩點(diǎn),連結(jié)
、
分別交直線
于
、
兩點(diǎn),試探究直線
、
的斜率之積是否為定值,若為定值,請(qǐng)求出;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓![]()
的右焦點(diǎn)![]()
,長(zhǎng)軸的左、右端點(diǎn)分別為
,且
.
(1)求橢圓
的方程;
(2)過(guò)焦點(diǎn)
斜率為
(
)的直線
交橢圓
于
兩點(diǎn),弦
的垂直平分線與
軸相交于
點(diǎn). 試問(wèn)橢圓
上是否存在點(diǎn)
使得四邊形
為菱形?若存在,求
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直線
與拋物線
(常數(shù)
)相交于不同的兩點(diǎn)
、
,且
(
為定值),線段
的中點(diǎn)為
,與直線
平行的切線的切點(diǎn)為
(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).![]()
(1)用
、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(2)求
的面積,證明
的面積與
、
無(wú)關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連
、
,再作與
、
平行的切線,切點(diǎn)分別為
、
,小張馬上寫出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:![]()
,點(diǎn)A、B在拋物線C上.![]()
(1)若直線AB過(guò)點(diǎn)M(2p,0),且
=4p,求過(guò)A,B,O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為
,且
,問(wèn)直線AB是否會(huì)過(guò)某一定點(diǎn)?若是,求出這一定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
巳知橢圓
的離心率是
.
⑴若點(diǎn)P(2,1)在橢圓上,求橢圓的方程;
⑵若存在過(guò)點(diǎn)A(1,0)的直線
,使點(diǎn)C(2,0)關(guān)于直線
的對(duì)稱點(diǎn)在橢圓上,求橢圓的焦距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
:
的離心率為
,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.![]()
(1)求橢圓
的方程;
(2)如圖,設(shè)橢圓
的上、下頂點(diǎn)分別為
,
是橢圓上異于
的任意一點(diǎn),直線
分別交
軸于點(diǎn)
,若直線
與過(guò)點(diǎn)
的圓
相切,切點(diǎn)為
.證明:線段
的長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓G:
.過(guò)點(diǎn)(m,0)作圓
的切線l交橢圓G于A,B兩點(diǎn).
(1)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;
(2)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com