某家庭進行理財投資,根據長期收益率市場預測,投資債券等穩健型產品的收益與投資額成正比,投資股票等風險型產品的收益與投資額的算術平方根成正比。已知投資1萬元時兩類產品的收益分別為0.125萬元和0.5萬元(如圖). ![]()
![]()
(1)分別寫出兩種產品的收益與投資的函數關系.
(2)該家庭現有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
科目:高中數學 來源: 題型:解答題
已知函數f(x)=lnx+a
,其中a為大于零的常數.
(1)若函數f(x)在區間[1,+∞)內單調遞增,求實數a的取值范圍.
(2)求證:對于任意的n∈N*,且n>1時,都有lnn>
+
+…+
恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2014·鄭州模擬)已知函數f(x)=ex+ax,g(x)=ax-lnx,其中a≤0.
(1)求f(x)的極值.
(2)若存在區間M,使f(x)和g(x)在區間M上具有相同的單調性,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知關于x的一元二次函數![]()
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數作為
和
,
求函數
在區間[
上是增函數的概率;
(2)設點(
,
)是區域
內的隨機點,求函數
上是增函數的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
為了綠化城市,準備在如圖所示的區域DFEBC內修建一個矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的內部有一文物保護區不能占用,經測量AB=100m,BC=80m,AE=30m,AF=20m。應如何設計才能使草坪的占地面積最大?![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
.設
,
(max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記
的最小值為A,
的最大值為B,則
( )
| A.16 |
| B. |
| C. |
| D. |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com