若橢圓
的離心率為
,焦點在
軸上,且長軸長為10,曲線
上的點與橢圓
的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓
的標準方程;
(2)求曲線
的方程。
科目:高中數學 來源: 題型:解答題
(12分)已知拋物線
的焦點為
,準線為
,過
上一點P作拋物線的兩切線,切點分別為A、B,
(1)求證:
;
(2)求證:A、F、B三點共線;
(3)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分10分)已知中心在原點O,焦點在
軸上的橢圓C的離心率為
,點A,B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為
。![]()
(1)求橢圓C的標準方程;
(2)已知點E(3,0),設點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,
求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
的左、右頂點分別為
、
,點
在橢圓上且異于
、
兩點,
為坐標原點.
(1)若直線
與
的斜率之積為
,求橢圓的離心率;
(2)對于由(1)得到的橢圓
,過點
的直線
交
軸于點
,交
軸于點
,若
,求直線
的斜率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com