中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2013•黑龍江二模)已知函數f(x)=lnx,x1,x2∈(0,
1
e
),且x1<x2,則下列結論中正確的是(  )
分析:根據函數的單調性可得A不正確;根據函數的圖象是下凹的,可得B不正確; 利用導數判斷函數
f(x)
x
在(0,+∞)上是增函數,故有
f(x2)
x2
f(x1)
x1

化簡可得 x1f(x2)>x2f(x1),故C正確、且D不正確.
解答:解:由于已知函數f(x)=lnx在定義域(0,+∞)上是增函數,x1,x2∈(0,
1
e
),且x1<x2 ,可得[f(x1)-f(x2)]<0,
故(x1-x2)[f(x1)-f(x2)]>0,故A不正確.
由于已知函數f(x)=lnx的增長速度較慢,圖象是下凹型的,故有f(
x1+x2
2
)>f(
f(x1)+f(x2)
2
),故B不正確.
∵已知函數f(x)=lnx,x1,x2∈(0,
1
e
),且x1<x2 ,則 [
f(x)
x
]
′=
f′(x)x-f(x)
x2
=
1-lnx
x2
>0,
∴函數
f(x)
x
 在(0,+∞)上是增函數,故有
f(x2)
x2
f(x1)
x1
,化簡可得 x1f(x2)>x2f(x1),故C正確、且D不正確.
故選C.
點評:本題主要考查導數的運算法則的應用,利用導數研究函數的單調性,函數的單調性的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•黑龍江二模)某幾何體的三視圖 (單位:cm) 如圖所示,則此幾何體的體積是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黑龍江二模)求“方程(
3
5
x+(
4
5
x=1的解”有如下解題思路:設f(x)=(
3
5
x+(
4
5
x,則f(x)在R上單調遞減,且f(2)=1,所以原方程有唯一解x=2.類比上述解題思路,方程x6+x2=(x+2)3+(x+2)的解集為
{-1,2}
{-1,2}

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黑龍江二模)如圖,在四棱錐P-ABCD中,側棱PA丄底面ABCD底面ABCD為矩形,E為PD上一點,AD=2AB=2AP=2,PE=2DE.
(I)若F為PE的中點,求證BF∥平面ACE;
(Ⅱ)求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黑龍江二模)復平面內,表示復故
1+i
2-i
(其中i為虛數單位)的點位于(  )

查看答案和解析>>

同步練習冊答案