設橢圓M:
=1(a>
)的右焦點為F1,直線l:x=
與x軸交于點A,若
1=2
(其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點),求
·
的最大值.
科目:高中數(shù)學 來源: 題型:解答題
設拋物線的頂點在原點,準線方程為x=-
.
(1)求拋物線的標準方程;
(2)若點P是拋物線上的動點,點P在y軸上的射影是Q,點M
,試判斷|PM|+|PQ|是否存在最小值,若存在,求出其最小值,若不存在,請說明理由;
(3)過拋物線焦點F作互相垂直的兩直線分別交拋物線于A,C,B,D,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,點P(0,-1)是橢圓C1:
=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求當△ABD的面積取最大值時,直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓
=1(a>b>0)的左焦點為F,離心率為
,過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若
+
=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
己知橢圓C:
(a>b>0)的右焦點為F(1,0),點A(2,0)在橢圓C上,斜率為1的直線
與橢圓C交于不同兩點M,N.
(1)求橢圓C的方程;
(2)設直線
過點F(1,0),求線段
的長;
(3)若直線
過點(m,0),且以
為直徑的圓恰過原點,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知點
、
為雙曲線
:
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
.圓
的方程是
.
(1)求雙曲線
的方程;
(2)過雙曲線
上任意一點
作該雙曲線兩條漸近線的垂線,垂足分別為
、
,求
的值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓
的右焦點為F2(1,0),點
在橢圓上.![]()
(1)求橢圓方程;
(2)點
在圓
上,M在第一象限,過M作圓
的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系
中,已知點
,
是動點,且
的三邊所在直線的斜率滿足
.
(1)求點
的軌跡
的方程;
(2)若
是軌跡
上異于點
的一個點,且
,直線
與
交于點
,問:是否存在點
,使得
和
的面積滿足
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com