(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關系;
(2)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
已知圓
的圓心在坐標原點
,且恰好與直線
相切,設點A為圓上一動點,
軸于點
,且動點
滿足
,設動點
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
的左、右焦點分別為
,上頂點為A,在x軸負半軸上有一點B,滿足
三點的圓與直線
相切.
(1)求橢圓C的方程;
(2)過右焦點
作斜率為k的直線
與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于A、B兩點,以
弦為直徑的圓過坐標原點
,試探討點
到直線
的距離是否為定值?若是,求出這個定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
,直線
的方程為
,過右焦點
的直線
與橢圓交于異于左頂點
的
兩點,直線
,
交直線
分別于點
,
.
(1)當
時,求此時直線
的方程;
(2)試問
,
兩點的縱坐標之積是否為定值?若是,求出該定值;若不是,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的兩個焦點分別為
和
,離心率
.
(1)求橢圓
的方程;
(2)設直線
(
)與橢圓
交于
、
兩點,線段
的垂直平分線交
軸于點
,當
變化時,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com