中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
2x+a,x<1
-x-2a,x≥1
,若f(1-a)<f(1+a)
,則實數a的取值范圍是
-
3
4
<a<0
-
3
4
<a<0
分析:分三種情況討論:當a>0時;當a<0時,當a=0時,分別把不等式f(1-a)<f(1+a)表示出來,解出即可.
解答:解:①當a>0時,1+a>1,1-a<1,
f(1-a)<f(1+a)?2(1-a)+a<-(1+a)-2a?a<-
3
2
,與a>0矛盾,舍;
②當a<0時,1+a<1,1-a>1,
f(1-a)<f(1+a)?-(1-a)-2a<2(1+a)+a?a>-
3
4
,所以-
3
4
<a<0;
③a=0時顯然不成立;
綜上,實數a的取值范圍為:-
3
4
<a<0,
故答案為:-
3
4
<a<0.
點評:本題考查分段函數求值,考查不等式的求解,考查分類討論思想,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
2x+1x2+2

(Ⅰ)求f(x)的單調區間和極值;
(Ⅱ)若對一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2x
|x|+1
(x∈R)
,區間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數對(a,b)有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•重慶三模)設函數f(x)=
2x+3
3x-1
,則f-1(1)
=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2
x+2
,點A0表示原點,點An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夾角[其中
i
=(1,0)]
,設Sn=tanθ1+tanθ2+…+tanθn,則
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,則x0等于(  )

查看答案和解析>>

同步練習冊答案