如右圖,正方體
的棱長(zhǎng)為1.應(yīng)用空間向量方法求:![]()
⑴ 求
和
的夾角
⑵
.
(1)![]()
(2)對(duì)于線(xiàn)線(xiàn)垂直的證明可以運(yùn)用幾何性質(zhì)法也可以運(yùn)用向量法來(lái)證明向量的垂直即可。
解析試題分析:解:建立空間直角坐標(biāo)系,則
- 1分
⑴ 所以
,
, - 2分
,
所以
- 4分
所以
5分
⑵ 因?yàn)?nbsp;
,
, 7分
-9分
所以
. 10分
考點(diǎn):空間向量的運(yùn)用
點(diǎn)評(píng):主要是考查了向量法來(lái)求解異面直線(xiàn)所成的角和線(xiàn)線(xiàn)垂直的證明,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點(diǎn).![]()
(1)求證:B1E⊥AD1.
(2)在棱AA1上是否存在一點(diǎn)P,使得DP∥平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(3)若二面角A-B1E-A1的大小為30°,求AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐S
ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的
倍,P為側(cè)棱SD上的點(diǎn).![]()
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P
AC
D的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四棱錐
中,底面
為平行四邊形,側(cè)面
面
,已知![]()
(Ⅰ)求證:
;
(Ⅱ)在SB上選取點(diǎn)P,使SD//平面PAC ,并證明;
(Ⅲ)求直線(xiàn)
與面
所成角的正弦值。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1, 在直角梯形
中,
,
,
,
為線(xiàn)段
的中點(diǎn). 將
沿
折起,使平面![]()
平面
,得到幾何體
,如圖2所示.
(1)求證:
平面
;
(2)求二面角
的余弦值. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。![]()
(I)求棱PB的長(zhǎng);
(II)求二面角P—AB—C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題10分)如圖,已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,
,![]()
(1)求證:AC⊥BF;
(2)求點(diǎn)A到平面FBD的距離. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在棱長(zhǎng)為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點(diǎn)
(1)求直線(xiàn)AM和CN所成角的余弦值;
(2)若P為B1C1的中點(diǎn),求直線(xiàn)CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點(diǎn),且
,當(dāng) B1D⊥面PMN時(shí),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com