中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N,
(1)當t=2時,求函數f(x)的單調遞增區間;
(2)設|MN|=g(t),試求函數g(t)的表達式;
(3)在(2)的條件下,若對任意的正整數n,在區間[2,n+]內,總存在m+1個數a1,a2,....,am
am+1,使得不等式g(a1)+g(a2)+...+g(am)<g(am+1)成立,求m的最大值
解:(10當t=2時,f(x)=x+
解得x>或x<-,則函數f(x)有單調增區間為
(2)設M、N兩點的橫坐標分別為,x2
切線PM的方程為:
又∵切線PM過點P(1,0),∴有
,(1)
同理,由切線PN也過點(1,0),得 (2)
由(1)、(2),可得x1,x2是方程的兩根,



把(*)式代入,得
 因此,函數g(t)的表達式為
(3)易知g(t)在區間上為增函數,


對一切正整數n成立,
∴不等式對一切的正整數n成立

對一切的正整數n成立,


由于m為正整數,∴
又當m=6時,存在,對所有的n滿足條件。
因此,m的最大值為6。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:044

(溫州十校模擬)已知函數,過點P(10)作曲線y=f(x)的兩條切線PMPN,切點分別為MN

(1)t=2時,求函數f(x)的單調遞增區間;

(2)|MN|=g(t),試求函數g(t)的表達式;

(3)(2)的條件下,若對任意的正整數n,在區間內總存在m1個數,…,,使得不等式成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源:陜西部分學校2008年5月高三聯合測試、理科數學測題 題型:044

已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.

(1)當t=2時,求函數f(x)的單調遞增區間;

(2)設|MN|=g(t),試求函數g(t)的表達式

(3)在(2)的條件下,若對任意的正整數n,在區間[]內總存在m+1個實數a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源:同升湖國際實驗學校2008屆高三數學文科第五次月考試卷、人教版 人教版 題型:044

已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N.

(1)當t=2時,求函數f(x)的單調遞增區間;

(2)設|MN|=g(t),試求函數g(t)的解析式;

(3)在(2)的條件下,若對任意的正整數n,在區間內總存在m+1個實數λ1,λ2……λm,λm+1使得不等式g(λ1)+g(λ2)+…+g(λm)<g(λm+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分15分)

已知函數,過點P(1,0)作曲線的兩條切線PMPN,切點分別為M,N

   (1)當時,求函數的單調遞增區間;

   (2)設|MN|=,試求函數的表達式;

                                                                                                   

查看答案和解析>>

同步練習冊答案