已知函數(shù)![]()
(Ⅰ)
時(shí),求
在
處的切線方程;
(Ⅱ)若
對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)當(dāng)
時(shí),設(shè)函數(shù)
,若
,求證:
.
(Ⅰ)
;(Ⅱ)
;(Ⅲ)詳見(jiàn)解析.
解析試題分析:(Ⅰ)將
代入,求導(dǎo)即得;(Ⅱ)
,即
在
上恒成立. 不等式恒成立的問(wèn)題,一般有以下兩種考慮,一是分離參數(shù),二是直接求最值.在本題中,設(shè)
,則
,這里面不含參數(shù)
了,求
的最大值比較容易了,所可直接求最大值.(Ⅲ)本題首先要考慮的是,所要證的不等式與函數(shù)
有什么關(guān)系?待證不等式可作如下變形:
,最后這個(gè)不等式與
有聯(lián)系嗎?我們?cè)偻驴?
,所以在
上
是增函數(shù).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/f/1ty5e3.png" style="vertical-align:middle;" />,所以![]()
即
從這兒可以看出,有點(diǎn)聯(lián)系了.
同理
,
所以
,
與待證不等式比較,只要
問(wèn)題就解決了,而這由重要不等式可證,從而問(wèn)題得證.
試題解析:(Ⅰ)
,
,所以切線為:
即
. 3分
(Ⅱ)
,
,即
在
上恒成立
設(shè)
,
,
時(shí),單調(diào)減,
單調(diào)增,
所以
時(shí),
有最大值.
,
所以
. 8分
法二、
可化為
.
令
,則
,所以![]()
所以
.
(Ⅲ)當(dāng)
時(shí),
,
,所以在
上
是增函數(shù),
上是減函數(shù).
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/f/1ty5e3.png" style="vertical-align:middle;" />,所以![]()
即
,同理
.
所以![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/2/1fake4.png" style="vertical-align:middle;" />當(dāng)且僅當(dāng)“
”時(shí),取等號(hào).
又
,
,
所以
,所以
,
所以:
. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等式的證明.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
(其中
為常數(shù));
(Ⅰ)如果函數(shù)
和
有相同的極值點(diǎn),求
的值;
(Ⅱ)設(shè)
,問(wèn)是否存在
,使得
,若存在,請(qǐng)求出實(shí)數(shù)
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)記函數(shù)
,若函數(shù)
有5個(gè)不同的零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,設(shè)![]()
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間
(Ⅱ)若以函數(shù)
圖象上任意一點(diǎn)
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值
(Ⅲ)是否存在實(shí)數(shù)
,使得函數(shù)
的圖象與函數(shù)
的圖象恰有四個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)
的取值范圍;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
:
.
(Ⅰ)當(dāng)
時(shí),求曲線
的斜率為1的切線方程;
(Ⅱ)設(shè)斜率為
的兩條直線與曲線
相切于
兩點(diǎn),求證:
中點(diǎn)
在曲線
上;
(Ⅲ)在(Ⅱ)的條件下,又已知直線
的方程為:
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
.
(1)曲線y=f(x)在x=0處的切線恰與直線
垂直,求
的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,(其中
),設(shè)
.
(Ⅰ)當(dāng)
時(shí),試將
表示成
的函數(shù)
,并探究函數(shù)
是否有極值;
(Ⅱ)當(dāng)
時(shí),若存在
,使
成立,試求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若
在區(qū)間
單調(diào)遞增,求
的最小值;
(2)若
,對(duì)
,使
成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
,已知
(n∈N*).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),![]()
(Ⅲ)令
,數(shù)列
的前
項(xiàng)和為
.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com