設(shè)
是數(shù)列
的前
項(xiàng)和,對(duì)任意
都有
成立, (其中
、
、
是常數(shù)).
(1)當(dāng)
,
,
時(shí),求
;
(2)當(dāng)
,
,
時(shí),
①若
,
,求數(shù)列
的通項(xiàng)公式;
②設(shè)數(shù)列
中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“
數(shù)列”.
如果
,試問(wèn):是否存在數(shù)列
為“
數(shù)列”,使得對(duì)任意
,都有
,且
.若存在,求數(shù)列
的首項(xiàng)
的所
有取值構(gòu)成的集合;若不存在,說(shuō)明理由.
(1)
=
;(2)①
;②存在,首項(xiàng)
的所有取值構(gòu)成的集合為
.
解析試題分析:(1)要求
,大多數(shù)時(shí)候要先求
,本題實(shí)質(zhì)就是有關(guān)系式
,那么我們可以用
代
得
,兩式相減,可得出
與
的關(guān)系,本題正好得到數(shù)列
是等比數(shù)列,故易求得
和
;(2) 實(shí)質(zhì)上的關(guān)系式是
,這讓我們聯(lián)想到數(shù)列
是等差數(shù)列,這里難點(diǎn)就在于證明
是等差數(shù)列,證明方法是把等式
中的
用
換得到一個(gè)式子,兩式相減可得
,此式中含有常數(shù)
,故再一次用
代換此式中的
,兩式相減可消去
得數(shù)列
的連續(xù)三項(xiàng)
的關(guān)系,可證得
是等差數(shù)列,那么這里①的通項(xiàng)公式易求;對(duì)于②這類問(wèn)題總是假設(shè)存在,然后去求,假設(shè)存在時(shí),可知數(shù)列公差是2,即
,由于它是“
數(shù)列”,故任意兩項(xiàng)和還是數(shù)列中的項(xiàng),即
,可得
是偶數(shù),又由
,得
,娵
,從而
,下面對(duì)
的值一一驗(yàn)證是否符合已知條件
,
試題解析:(1)當(dāng)
,
,
時(shí),由
得
①
用
去代
得,
, ②
②—①得,
,
,
在①中令
得,
,則
0,∴
,
∴數(shù)列
是以首項(xiàng)為1,公比為3的等比數(shù)列,
∴
=![]()
(2)當(dāng)
,
,
時(shí),
, ③
用
去代
得,
, ④
④—③得,
, ⑤
用
去代
得,
, ⑥
⑥—⑤得,
,即
,
∴數(shù)列
是等差數(shù)列.∵
,
,
∴公差
,∴![]()
易知數(shù)列![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)無(wú)窮數(shù)列
的首項(xiàng)
,前
項(xiàng)和為
(
),且點(diǎn)
在直線
上(
為與
無(wú)關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列
(
)為等比數(shù)列;
(2)記數(shù)列
的公比為
,數(shù)列
滿足
,設(shè)
,求數(shù)列
的前
項(xiàng)和
;
(3)若(2)中數(shù)列{Cn}的前n項(xiàng)和Tn當(dāng)
時(shí)不等式
恒成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
、
的每一項(xiàng)都是正數(shù),
,
,且
、
、
成等差數(shù)列,
、
、
成等比數(shù)列,
.
(Ⅰ)求
、
的值;
(Ⅱ)求數(shù)列
、
的通項(xiàng)公式;
(Ⅲ)證明:對(duì)一切正整數(shù)
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和為
記![]()
(1)若數(shù)列
是首項(xiàng)與公差均為
的等差數(shù)列,求
;
(2)若
且數(shù)列
均是公比為
的等比數(shù)列,
求證:對(duì)任意正整數(shù)
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列
中,前n項(xiàng)和為
,且
.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,數(shù)列
前n項(xiàng)和為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)已知等比數(shù)列
滿足
.
(1)求數(shù)列
的前15項(xiàng)的和
;
(2)若等差數(shù)列
滿足
,
,求數(shù)列
的前
項(xiàng)的和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是公差大于零的等差數(shù)列,已知
,
.
(Ⅰ)求
的通項(xiàng)公式;
(Ⅱ)設(shè)
是以函數(shù)
的最小正周期為首項(xiàng),以
為公比的等比數(shù)列,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為等比數(shù)列,
是等差數(shù)列,![]()
(Ⅰ)求數(shù)列
的通項(xiàng)公式及前
項(xiàng)和
;
(2)設(shè)![]()
,![]()
,其中
,試比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是公比大于1的等比數(shù)列,
為數(shù)列
的前
項(xiàng)和.已知
,且
構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com