設(shè)無窮數(shù)列{an}滿足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前n項(xiàng)和為
,![]()
(1)證明:數(shù)列
是等差數(shù)列,并求
;
(2)設(shè)
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列
中,
且對任意的
成等比數(shù)列,其公比為
,
(1)若
;
(2)若對任意的
成等差數(shù)列,其公差為
.
①求證:
成等差數(shù)列,并指出其公差;
②若
,試求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列
的前n項(xiàng)和為Sn,已知
,且
對一切
都成立.
(1)若λ = 1,求數(shù)列
的通項(xiàng)公式;
(2)求λ的值,使數(shù)列
是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列![]()
中,其前
項(xiàng)和為
,滿足
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
(
為正整數(shù)),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,a7=4,a19=2a9.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
是等差數(shù)列,且
.
(1)求數(shù)列
的通項(xiàng)公式; (2)令
,求數(shù)列
前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4·a7=15,a3+a8=8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
(n≥2),b1=
,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com