已知函數(shù)![]()
(1)若
在
是增函數(shù),求
的取值范圍;
(2)已知
,對于函數(shù)
圖象上任意不同兩點
,
,其中
,直線
的斜率為
,記
,若
求證:
.
(1)
;(2)詳見解析
解析試題分析:(1)先求
,由題意
恒成立,參變分離得
,進而求
的取值范圍;
(2)首先將向量式
坐標(biāo)化,得
三點坐標(biāo)的關(guān)系,表示
,進而表示
,然后根據(jù)
兩點坐標(biāo)結(jié)合函數(shù)
的解析式表示
,再后作差比較![]()
![]()
-
,因為
,故只需證明
,再恒等變形為
,進而
,設(shè)![]()
,構(gòu)造自變量為
的函數(shù),求其最大值,只需說明最大值小于0.
試題解析:(1)由![]()
得
,
,又當(dāng)
時,
,所以
;
(II)![]()
,∵![]()
,
,
∴
,∴
,![]()
![]()
+1,![]()
-
,∵![]()
,
,∴
,要證
,只要證
,
即
,設(shè)
,則
,
顯然
令
,考慮
在
上的單調(diào)性,![]()
令
,
,
,對稱軸
,
,則
,故
在
遞減,則有
,故
.
考點:1、導(dǎo)數(shù)在單調(diào)性上的應(yīng)用;2、直線的斜率;3、向量的坐標(biāo)運算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
處的切線與
軸平行.
(1)求
的值和函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖象與拋物線
恰有三個不同交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)求函數(shù)
單調(diào)遞增區(qū)間;
(2)若存在
,使得
是自然對數(shù)的底數(shù)),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
若
是函數(shù)
的極值點,1和
是函數(shù)
的兩個不同零點,且
,求
.
若對任意
,都存在
(
為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。(
為常數(shù),
)
(Ⅰ)若
是函數(shù)
的一個極值點,求
的值;
(Ⅱ)求證:當(dāng)
時,
在
上是增函數(shù);
(Ⅲ)若對任意的
,總存在
,使不等式
成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)當(dāng)
時判斷
的單調(diào)性;
(2)若
在其定義域為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時,若
,總有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖像過原點,且在
處的切線為直線![]()
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
,數(shù)列
,滿足0<
<1,
,數(shù)列
滿足
,
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求證:0<
<
<1;
(Ⅲ)若
且
<
,則當(dāng)n≥2時,求證:
>![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為函數(shù)
圖象上一點,
為坐標(biāo)原點,記直線
的斜率
.
(1)若函數(shù)
在區(qū)間
上存在極值,求實數(shù)
的取值范圍;
(2)當(dāng)
時,不等式
恒成立,求實數(shù)
的取值范圍;
(3)求證:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com