中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若f(x)=ax+b一個零點2,則g(x)=bx2-ax的零點是(  )
A.0或2B.0或
1
2
C.0或-
1
2
D.2或1
∵函數f(x)=ax+b(a≠0)有一個零點是2,
∴2a+b=0.
故g(x)=bx2-ax=bx2+
1
2
bx=bx(x+
1
2
),
令bx(x+
1
2
)=0,可得x=0,或 x=-
1
2

故g(x)=bx2-ax的零點是0和-
1
2

故選C.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側面的長度x不得超過a米,房屋正面的造價為400元/m2,房屋側面的造價為150元/m2,屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.
(1)把房屋總造價表示成的函數,并寫出該函數的定義域.
(2)當側面的長度為多少時,總造價最底?最低總造價是多少?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知二次函數y=g(x)的導函數的圖象與直線y=2x平行,且y=g(x)在x=-1處取得極小值m-1(m≠0).設f(x)=
g(x)
x

(1)若曲線y=f(x)上的點P到點Q(0,2)的距離的最小值為
2
,求m的值;
(2)k(k∈R)如何取值時,函數y=f(x)-kx存在零點,并求出零點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

方程x5-x-1=0的一個零點存在的區間可能是______.(端點值為整數)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=lnx+x-2的零點個數是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

關于x的方程|x2-2x|+m+1=0有兩個不相等的實數根,則m的取值范圍是 ______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)=
x+
1
2
,x∈[0,
1
2
)
3x2,x∈[
1
2
,1]
,若存在x1<x2,使得f(x1)=f(x2),則x1•f(x2)的取值范圍為(  )
A.[
3
4
,1)
B.[
1
8
3
6
)
C.[
3
16
1
2
)
D.[
3
8
,3)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知
2
<a<2,則函數f(x)=
a2-x2
+|x|-2的零點個數為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=3x+x在下列哪個區間內有零點(  )
A.[-2,-1]B.[-1,0]C.[0,1]D.[1,2]

查看答案和解析>>

同步練習冊答案