中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
橢圓的一個焦點是F2(2,0),離心率e=
1
2
,則橢圓的標準方程是
x2
16
+
y2
12
=1
x2
16
+
y2
12
=1
分析:先設出橢圓方程,根據條件列出關于a,b,c的方程,求出a,b,c即可得到結論.
解答:解:由題設橢圓方程為:
x2
a2
+
y2
b2
 =1
(a>b>0)
由題得:
c=2
c
a
=
1
2
a2=b2+c2
a2=16
b2=12

故橢圓方程為:
x2
16
+
y2
12
=1

故答案為:
x2
16
+
y2
12
=1
點評:本題主要考查橢圓的基本性質.解決問題的關鍵是根據條件列出關于a,b,c的方程,求出a,b,c.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知中心在原點,長軸在x軸上的橢圓的一個頂點是點(0,
5
),離心率為
6
6
,左、右焦點分別為F1和F2
(1)求橢圓方程;
(2)點M在橢圓上,求△MF1F2面積的最大值;
(3)試探究橢圓上是否存在一點P,使
PF1
PF2
=0
,若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),稱圓心在坐標原點O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”. 若橢圓C的一個焦點為F2
2
,0),其短軸上的一個端點到F2距離為
3

(1)求橢圓C及其“伴隨圓”的方程;
(2)若過點P(0,m)(m<0)的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為2
2
,求m的值;
(3)過橢圓C的“伴橢圓”上一動點Q作直線l1,l2,使得l1,l2與橢圓C都只有一個公共點,當直線l1,l2都有斜率時,試判斷直線l1,l2的斜率之積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

橢圓有這樣的光學性質:從橢圓的一個焦點出發的光線,經橢圓反射后,反射光線經過橢圓的另一焦點.一水平放置的橢圓形臺球盤,F1,F2是其焦點,長軸長2a,焦距為2c.一靜放在F1點處的小球(半徑忽略不計),受擊打后沿直線運動(不與直線F1F2重合),經橢圓壁反彈后再回到點F1時,小球經過的路程是(  )

查看答案和解析>>

科目:高中數學 來源:2009-2010學年廣東省珠海市斗門一中高二(上)期中數學試卷(文科)(解析版) 題型:填空題

橢圓的一個焦點是F2(2,0),離心率,則橢圓的標準方程是   

查看答案和解析>>

同步練習冊答案