已知
.
(1)若
存在單調(diào)遞減區(qū)間,求實(shí)數(shù)
的取值范圍;
(2)若
,求證:當(dāng)
時(shí),
恒成立;
(3)設(shè)
,證明:
.
(1)
;(2)證明過(guò)程詳見(jiàn)試題解析;(3)證明過(guò)程詳見(jiàn)試題解析.
解析試題分析:(1)當(dāng)
時(shí),
∴
. ∵
有單調(diào)減區(qū)間,∴
有解.分
兩種情況討論
有解.可得到
的取值范圍是
;(2)此問(wèn)就是要證明函數(shù)
在
上的最大值小于或等于
,經(jīng)過(guò)求導(dǎo)討論單調(diào)性得出當(dāng)
時(shí),
有最大值
,命題得證;(3)利用(2)的結(jié)論
,將此問(wèn)的不等關(guān)系
,轉(zhuǎn)化成與(2)對(duì)應(yīng)的函數(shù)關(guān)系進(jìn)行證明.
試題解析:(1)當(dāng)
時(shí),![]()
∴
.
∵
有單調(diào)減區(qū)間,∴
有解,即![]()
∵
,∴
有解.
(ⅰ)當(dāng)
時(shí)符合題意;
(ⅱ)當(dāng)
時(shí),△
,即
。
∴
的取值范圍是
.
(2)證明:當(dāng)
時(shí),設(shè)
,
∴
.
∵
,
討論
的正負(fù)得下表:
∴當(dāng)
時(shí)
有最大值0.
即
恒成立.
∴當(dāng)
時(shí),
恒成立.
(3)證明:∵
,
∴![]()
![]()
由(2)有![]()
∴
.
考點(diǎn):函數(shù)與導(dǎo)數(shù);不等式綜合.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某汽車(chē)的緊急剎車(chē)裝置在遇到特別情況時(shí),需在2 s內(nèi)完成剎車(chē),其位
移(單位:m)關(guān)于時(shí)間(單位:s)的函數(shù)為:s(t)=-3t3+t2+20,求:
(1)開(kāi)始剎車(chē)后1 s內(nèi)的平均速度;
(2)剎車(chē)1 s到2 s之間的平均速度;
(3)剎車(chē)1 s時(shí)的瞬時(shí)速度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數(shù),在(0,1)上是增函數(shù),函數(shù)f(x)在R上有三個(gè)零點(diǎn),且1是其中一個(gè)零點(diǎn).
(1)求b的值 (2)求f(2)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
時(shí),證明:方程f(x)=f
在區(qū)間(2,+∞)上有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)f(x)=
+xln x,g(x)=x3-x2-3.
(1)如果存在x1,x2∈[0,2]使得g(x1)-g(x2)≥M成立,求滿(mǎn)足上述條件的最大整數(shù)M;
(2)如果對(duì)于任意的s,t∈
,都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=
-3有四個(gè)零點(diǎn),求b的取值范圍;
(3)若對(duì)于任意的x1,x2∈[-1,1]時(shí),都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)![]()
.
(1)若曲線(xiàn)
經(jīng)過(guò)點(diǎn)
,曲線(xiàn)
在點(diǎn)
處的切線(xiàn)與直線(xiàn)
垂直,求
的值;
(2)在(1)的條件下,試求函數(shù)
(
為實(shí)常數(shù),
)的極大值與極小值之差;
(3)若
在區(qū)間
內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com