(本題滿分12分)
如圖,斜率為1的直線
過拋物線
的焦點F,與拋物線交于兩點A,B。
(1)若|AB|=8,求拋物線
的方程;
(2)設(shè)C為拋物線弧AB上的動點(不包括A,B兩點),求
的面積S的最大值;
(3)設(shè)P是拋物線
上異于A,B的任意一點,直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點,證明M,N兩點的縱坐標(biāo)之積為定值(僅與p有關(guān))
![]()
(1)![]()
(2)![]()
(3)證明見解析。
【解析】
解:設(shè)![]()
(1)由條件知直線![]()
由
消去y,得
…………1分
由題意,判別式
(不寫,不扣分)
由韋達(dá)定理,![]()
由拋物線的定義,![]()
從而
所求拋物的方程為
…………3分
(2)設(shè)
。由(1)易求得![]()
則
…………4分
點C到直線
的距離![]()
將原點O(0,0)的坐標(biāo)代入直線
的左邊,
得![]()
而點C與原點O們于直線
的同側(cè),由線性規(guī)劃的知識知![]()
因此
…………6分
由(1),|AB|=4p。
![]()
![]()
由![]()
知當(dāng)
…………8分
(3)由(2),易得![]()
設(shè)
。
將
代入直線PA的方程![]()
得![]()
同理直線PB的方程為![]()
將
代入直線PA,PB的方程得
…………10分
![]()
![]()
![]()
…………12分
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項公式;(2)求數(shù)列
的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個實根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點,且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求點
到平面
的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com