已知橢圓
(a>b>0)的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)半徑的圓與直線y=x+
相切.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓在
軸上方的一個(gè)交點(diǎn)為
,
是橢圓的右焦點(diǎn),試探究以
為
直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.
(1)
; (2)兩圓心距為
,所以兩圓內(nèi)切.
解析試題分析:(1)由于e=
∴
1分
又
∴
3分
4分
所以橢圓的方程為:
5分
(2)由(1)可知,直線與橢圓的一個(gè)交點(diǎn)為
,![]()
則以
為直徑的圓方程是
,圓心為
,半徑為
9分
以橢圓長(zhǎng)軸為直徑的圓的方程是
,圓心是
,半徑是
11分
兩圓心距為
,所以兩圓內(nèi)切. 14分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與圓的位置關(guān)系。。
點(diǎn)評(píng):中檔題,本題橢圓的標(biāo)準(zhǔn)方程時(shí),應(yīng)用橢圓的幾何性質(zhì),屬于常見(jiàn)類型。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題研究圓與圓的位置關(guān)系,注意考查圓心距與半徑和(差)的關(guān)系。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.若橢圓上的點(diǎn)
到焦點(diǎn)
、
的距離之和等于4.
(1)寫(xiě)出橢圓
的方程和焦點(diǎn)坐標(biāo);
(2)過(guò)點(diǎn)
的直線與橢圓交于兩點(diǎn)
、
,當(dāng)
的面積取得最大值時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,
,圓
,一動(dòng)圓在
軸右側(cè)與
軸相切,同時(shí)與圓
相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以
,
為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且
,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線
與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸正方向建立平面直角坐標(biāo)系,直線的參數(shù)方程是:
(為參數(shù)).
(Ⅰ)求曲線
的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線
交于
,
兩點(diǎn),點(diǎn)
的直角坐標(biāo)為
,若
,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長(zhǎng)等于
的短軸長(zhǎng)。
與
軸的交點(diǎn)為
,過(guò)坐標(biāo)原點(diǎn)
的直線
與
相交于點(diǎn)
,直線
分別與
相交于點(diǎn)
。![]()
(1)求
、
的方程;
(2)求證:
。
(3)記
的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的左右焦點(diǎn)分別為
、
,離心率
,直線
經(jīng)過(guò)左焦點(diǎn)
.
(1)求橢圓
的方程;
(2)若
為橢圓
上的點(diǎn),求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系
中,動(dòng)點(diǎn)
到兩點(diǎn)
,
的距離之和等于
,設(shè)點(diǎn)
的軌跡為曲線
,直線
過(guò)點(diǎn)
且與曲線
交于
,
兩點(diǎn).
(1)求曲線
的軌跡方程;
(2)是否存在△
面積的最大值,若存在,求出△
的面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足
,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過(guò)點(diǎn)D(0,-2)作直線
與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足![]()
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知坐標(biāo)平面上點(diǎn)
與兩個(gè)定點(diǎn)
的距離之比等于5.
(1)求點(diǎn)
的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為
,過(guò)點(diǎn)
的直線
被
所截得的線段的長(zhǎng)為8,求直線
的方程
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com