已知點(diǎn)

分別是射線

,

上的動點(diǎn),

為坐標(biāo)原點(diǎn),且

的面積為定值2.
(I)求線段

中點(diǎn)

的軌跡

的方程;
(II)過點(diǎn)

作直線

,與曲線

交于不同的兩點(diǎn)

,與射線

分別交于點(diǎn)

,若點(diǎn)

恰為線段

的兩個(gè)三等分點(diǎn),求此時(shí)直線

的方程.
(Ⅰ)

(x>0)
(Ⅱ)

.
(I)由題可設(shè)

,

,

,其中

.
則

1分
∵

的面積為定值2,
∴

. 2分

,消去

,得:

. 4分
由于

,∴

,所以點(diǎn)

的軌跡方程為

(x>0).
5分
(II)依題意,直線

的斜率存在,設(shè)直線

的方程為

.
由

消去

得:

, 6分
設(shè)點(diǎn)

、

、

、

的橫坐標(biāo)分別是

、

、

、

,
∴由

得

8分
解之得:

.
∴

. 9分
由

消去

得:

,
由

消去

得:

,
∴

. 10分
由于

為

的三等分點(diǎn),∴


. 11分
解之得

. 12分
經(jīng)檢驗(yàn),此時(shí)

恰為

的三等分點(diǎn),故所求直線方程為

.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,P是雙曲線

(

右支上的一點(diǎn),

,

分別是左右焦點(diǎn),且焦距為2

,求△P


內(nèi)切圓圓心橫坐標(biāo)。

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線過點(diǎn)(3,-2),且與橢圓

有相同的焦點(diǎn).
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)求以雙曲線的右準(zhǔn)線為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線方程為

,
①求該雙曲線的實(shí)軸長、虛軸長、離心率、準(zhǔn)線方程;
②若拋物線

的頂點(diǎn)是該雙曲線的中心,而焦點(diǎn)是其左頂點(diǎn),求拋物線

的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
x2-
ay2=1的焦點(diǎn)坐標(biāo)是 ( )
A.( , 0) , (- , 0) | B.( , 0), (- , 0) |
C.(- , 0),( , 0) | D.(- , 0), ( , 0) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點(diǎn)M(-3,0)、N(3,0)、B(1,0),⊙O與MN相切于點(diǎn)B,過M、N與⊙O相切的兩直線相交于點(diǎn)P,則P點(diǎn)的軌跡方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線

-

=1上的一點(diǎn)P到雙曲線的一個(gè)焦點(diǎn)的距離為3,則點(diǎn)P到另一個(gè)焦點(diǎn)的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線

的離心率為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線

,P是其右支上任一點(diǎn),F(xiàn)
1、F
2分別是雙曲線的左、右焦點(diǎn),Q是P F
1上的點(diǎn),N是F
2Q上的一點(diǎn)。且有

求Q點(diǎn)的軌跡方程。
查看答案和解析>>