題文已知函數(shù)
.
(1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若不等式
對(duì)一切
恒成立,求
的取值范圍.
(1)
(2)![]()
【解析】
試題分析:(1)由于
,
當(dāng)
時(shí),
,令
,可得
.
當(dāng)
時(shí),
單調(diào)遞增.
所以函數(shù)
的單調(diào)遞減區(qū)間為
. 4分
(2)設(shè)
,
當(dāng)
時(shí),
,
令
,可得
或
,即![]()
令
,可得
.
所以
為函數(shù)
的單調(diào)遞增區(qū)間,
為函數(shù)
的單調(diào)遞減區(qū)間.
當(dāng)
時(shí),
,可得
為函數(shù)
的單調(diào)遞減區(qū)間.
所以函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
所以函數(shù)
,
要使不等式
對(duì)一切
恒成立,即
對(duì)一切
恒成立,
所以
. …12分
考點(diǎn):本小題主要考查導(dǎo)數(shù)的計(jì)算,單調(diào)區(qū)間的求解以及恒成立問題的解決。
點(diǎn)評(píng):求分段函數(shù)的單調(diào)區(qū)間時(shí),要注意分段討論求解,而恒成立問題一般轉(zhuǎn)化為最值問題求解,另外因?yàn)榇祟悊栴}一般以解答題的形式出現(xiàn),所以一定要注意步驟完整.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年萊蕪二中診斷一文)(本小題滿分12分)設(shè)函數(shù)
為實(shí)數(shù)。
(1)已知函數(shù)
在x=1處取得極值,求a的值;
(2)已知不等式
都成立,求實(shí)數(shù)x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年天津市薊縣高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
【題文】已知函數(shù)
.
(1)若
在
處取得極大值,求實(shí)數(shù)
的值;
(2)若
,求
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com