如圖,在平面直角坐標(biāo)系xoy中,拋物線y=
x 2-
x-10與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫(xiě)出計(jì)算過(guò)程;
(3)當(dāng)t∈(0,
)時(shí),△PQF的面積是否總為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫(xiě)出解答過(guò)程.
(1)在y=
x 2-
x-10中,令y=0,得x 2-8x-180=0.
解得x=-10或x=18,∴A(18,0).········································ 1分
在y=
x 2-
x-10中,令x=0,得y=-10.
∴B(0,-10).·························· 2分
∵BC∥x軸,∴點(diǎn)C的縱坐標(biāo)為-10.
由-10=
x 2-
x-10得x=0或x=8.
∴C(8,-10).························· 3分
∵y=
x 2-
x-10=
(x-4)2-![]()
∴拋物線的頂點(diǎn)坐標(biāo)為(4,-
).············································· 4分
(2)若四邊形PQCA為平行四邊形,由于QC∥PA,故只要QC=PA即可.
∵QC=t,PA=18-4t,∴t=18-4t.
解得t=
.······································································· 6分
(3)設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,則OP=4t,QC=t,且0<t<4.5,說(shuō)明點(diǎn)P在線段OA上,且不與點(diǎn)O,A重合.
∵QC∥OP, ∴
=
=
=
=
.
同理QC∥AF,∴
=
=
=
,即
=
.
∴AF=4t=OP.
∴PF=PA+AF=PA+OP=18.················································ 8分
∴S△PQF =
PF·OB=
×18×10=90
∴△PQF的面積總為定值90.·················································· 9分
(4)設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,則P(4t,0),F(18+4t,0),Q(8-t,-10) t∈(0,4.5).
∴PQ 2=(4t-8+t)2+10 2=(5t-8)2+100
FQ 2=(18+4t-8+t)2+10 2=(5t+10)2+100.
①若FP=FQ,則18 2=(5t+10)2+100.
即25(t+2)2=224,(t+2)2=
.
∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2=
=
.
∴t=
-2.································································· 11分
②若QP=QF,則(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,無(wú)0≤t≤4.5的t滿足.························· 12分
③若PQ=PF,則(5t-8)2+100=18 2.
即(5t-8)2=224,由于
≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.5 2=(
)2=
<224.
故無(wú)0≤t≤4.5的t滿足此方程.············································· 13分
注:也可解出t=
<0或t=
>4.5均不合題意,
故無(wú)0≤t≤4.5的t滿足此方程.
綜上所述,當(dāng)t=
-2時(shí),△PQF為等腰三角形.··················· 14分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| OP |
| OA |
| OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 6 |
| 1 |
| 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
試問(wèn):是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com