中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數.若,求的值;當時,求的單調區間.

 ;
時, 的單調遞增區間為,單調遞減區間為

解析試題分析:因為, ,
所以,  (1分)
 (2分)
所以有:,解得 (3分)
時,   (5分)
  (7分)
時,,  
時,
時,,  (9分)
所以的單調遞增區間為,單調遞減區間為。(10分)
考點:多項式恒等,應用導數研究函數的單調性。
點評:中檔題,利用導數研究函數的單調性,是導數應用的基本問題,主要依據“在給定區間,導函數值非負,函數為增函數;導函數值非正,函數為減函數”。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數F(x )=x2+aln(x+1)
(I)若函數y=f(x)在區間[1,+∞)上是單調遞增函數,求實數a的取值范圍;
(II)若函數y=f(x)有兩個極值點x1,x2,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, 
(1)求函數的單調區間;
(2)若函數上是減函數,求實數的最小值;
(3)若,使成立,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調區間;
(2)已知對定義域內的任意恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(I)證明當 
(II)若不等式取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)求的單調區間;
(Ⅱ)求在區間上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若函數的圖象在點處的切線的傾斜角為,對于任意的
 ,函數在區間 上總不是單調函數,
求實數的取值范圍;
(3)求證 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,在點處的切線方程為
(Ⅰ)求函數的解析式;
(Ⅱ)若對于區間上任意兩個自變量的值,都有,求實數的最小值;
(Ⅲ)若過點,可作曲線的三條切線,求實數 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數在x=與x =l時都取得極值
(1)求a、b的值與函數f(x)的單調區間
(2)若對x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。

查看答案和解析>>

同步練習冊答案