中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
關于y=3sin(2x+
π
4
)
有以下命題:
①若f(x1)=f(x2)=0,則x1-x2
π
2
的整數倍;
②函數解析式可改寫為y=3cos(2x-
π
4
)

③函數圖象關于x=-
π
8
對稱;
④函數圖象關于點(-
π
8
,0)
對稱;
其中正確的命題是
①②④
①②④
分析:利用三角函數的性質,誘導公式,一一驗證,即可得到結論.
解答:解:①∵y=3sin(2x+
π
4
)
的周期為T=
2
=π,∴f(x1)=f(x2)=0時,x1-x2
π
2
的整數倍,正確;
②函數解析式y=3sin(2x+
π
4
)=3cos(2x+
π
4
-
π
2
)
,即y=3cos(2x-
π
4
)
,故正確;
x=-
π
8
時,y=3sin(-
π
4
+
π
4
)
=0,∴函數圖象不關于x=-
π
8
對稱,故不正確;
④由③知,函數圖象關于點(-
π
8
,0)
對稱,正確;
故答案為①②④
點評:本題考查三角函數的性質,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列五個結論:
①函數y=2sin(2x-
π
3
)
有一條對稱軸是x=
12
;
②函數y=tanx的圖象關于點(
π
2
,0)對稱;
③正弦函數在第一象限為增函數;
④要得到y=3sin(2x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個單位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z;
其中正確的有
①②
①②
.(填寫正確結論前面的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f (x)=
3
sin xcos x-cos2x-
1
2
,x∈R.
(1)求函數f (x)的最小值和最小正周期;
(2)若函數g (x)的圖象與函數f (x)的圖象關于y軸對稱,記F (x)=f (x)+g (x),求F (x)的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=3sin(2x-
π
3
)的圖象為C,給出四個結論:
①圖象C關于直線x=
11
12
π對稱;
②圖象C關于點(
3
,0)對稱;
③函數f(x)在區間(-
π
12
,
12
)上是增函數;
④由y=3sin2x的圖象向右平移
π
3
個單位長度可以得到圖象C.
其中正確結論的個數是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

關于y=3sin(2x+
π
4
)
有以下命題:
①若f(x1)=f(x2)=0,則x1-x2
π
2
的整數倍;
②函數解析式可改寫為y=3cos(2x-
π
4
)
;
③函數圖象關于x=-
π
8
對稱;
④函數圖象關于點(-
π
8
,0)
對稱;
其中正確的命題是______.

查看答案和解析>>

同步練習冊答案