如圖,四棱錐P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).
![]()
(1)求證:AF∥平面PCE;
(2)求三棱錐C-BEP的體積.
(1)詳見(jiàn)解析;(2)三棱錐
的體積為
.
【解析】
試題分析:(1)求證:
∥平面
,證明線面平行,首先證明線線平行,可用三角形的中位線平行,也可用平行四邊形的對(duì)邊平行,本題欲證
∥平面
,根據(jù)直線與平面平行的判定定理可知只需證
與平面
內(nèi)一直線平行,取
的中點(diǎn)
,連接
,易證
,從而得
∥平面
;(2)求三棱錐
的體積,三棱錐
的體積可轉(zhuǎn)化成三棱錐
的體積,而
底面
,從而
即為三棱錐
的高,根據(jù)三棱錐的體積公式進(jìn)行求解即可.
試題解析:(1)證明:取PC的中點(diǎn)G,連接GF,因?yàn)?/span>F為PD的中點(diǎn),
所以,GF∥CD且
又E為AB的中點(diǎn),ABCD是正方形,
所以,AE∥CD且
故AE∥GF且![]()
所以,AEGF是平行四邊形,故AF∥EG,而
平面
,
平面
,所以,AF∥平面
.
(2)因?yàn)?/span>PA⊥底面ABCD,所以,PA是三棱錐P-EBC的高,PA⊥AD,PA=2,
∠PDA=450,所以,AD=2,正方形ABCD中,E為AB的中點(diǎn),所以,EB=1,故
的面積為1,故
.
故三棱錐C-BEP的體積為
.
考點(diǎn):直線與平面平行的判定;棱柱、棱錐、棱臺(tái)的體積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-1練習(xí)卷(解析版) 題型:填空題
如圖所示,AB為⊙O的直徑,AC=4 cm,BC=3 cm,CD⊥AB于D,則CD的長(zhǎng)為________ cm.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)1-1練習(xí)卷(解析版) 題型:填空題
如圖所示,已知a∥b∥c,直線m、n分別與a、b、c交于點(diǎn)A、B、C和A′、B′、C′,如果AB=BC=1,A′B′=
,則B′C′=________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)第一象限內(nèi)的點(diǎn)
滿足約束條件
,若目標(biāo)函數(shù)![]()
的最大值為40,則
的最小值為( )
(A)
(B)
(C)1 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
復(fù)數(shù)
的實(shí)部是 ( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
若存在實(shí)數(shù)
使
成立,則實(shí)數(shù)
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
直線
與圓
沒(méi)有公共點(diǎn),則
的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com